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Abstract: Intracranial hemorrhage (ICH) is a dangerous life-threatening condition leading to disability.
Timely and high-quality diagnosis plays a huge role in the course and outcome of this disease. The gold
standard in determining ICH is computed tomography. This method requires a prompt involvement
of highly qualified personnel, which is not always possible, for example, in case of a staff shortage or
increased workload. In such a situation, every minute counts, and time can be lost. The solution to this
problem seems to be a set of diagnostic decisions, including the use of artificial intelligence, which will
help to identify patients with ICH in a timely manner and provide prompt and quality medical care.
However, the main obstacle to the development of artificial intelligence is a lack of high-quality datasets
for training and testing. In this paper, we present a dataset including 800 brain CT scans consisting of
multiple series of DICOM images with and without signs of ICH, enriched with clinical and technical
parameters, as well as the methodology of its generation utilizing natural language processing tools. The
dataset is publicly available, which contributes to increased competition in the development of artificial
intelligence systems and their advancement and quality improvement.

Dataset: https://mosmed.ai/en/datasets/rasshirenniinaborkompyuternihtomogrammgm/.

Dataset License: CC-BY-NC-ND

Keywords: computed tomography; intracranial hemorrhage; artificial intelligence; training dataset

1. Summary

Intracranial hemorrhage (ICH) of any genesis is a potentially life-threatening condition.
A variety of conditions can cause ICH. They can be classified as primary (80–85%) and
secondary (15–20%), as well as traumatic and nontraumatic. According to the Global
Burden of Disease, Injuries, and Risk Factors Study (GBD) [1], in 2019, nontraumatic ICH
resulting from aneurysm rupture or vascular malformation or hemorrhagic transformation
of ischemic stroke accounted for 37.6% (4.59 million people) of all stroke cases (12.2 million)
with a prevalence of 350 per 100,000 people, and a mortality rate of 3.3 million, which is
half of all stroke deaths in 2019 (6.55 million). Traumatic ICH also makes a significant
contribution to mortality. Every year, about 69 million people experience a traumatic brain
injury (TBI) [2], of which about 5.48 million suffer from severe TBI with ICH [3]. Mortality
in this group of patients is up to 90%. At the same time, from 1,730,000 to 1,965,000 lives
could be saved with timely and professional assistance [3].

The number of hospitalizations primarily for nontraumatic ICH has increased sig-
nificantly over the past two decades due to the aging population, more frequent use of
blood thinners, and/or lack of blood pressure control, and hypertension is a major risk
factor for hemorrhage [1]. Computed tomography (CT) is considered the gold standard
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for diagnosing ICH upon admission to the hospital, as the most sensitive to hemorrhage
and the fastest imaging method [4]. However, a widespread use of CT, especially in the
emergency medical care, leads to a significant increase in the workload of radiologists
and can increase a number of diagnostic errors and missed diagnoses [5], as well as lead
to employees’ emotional burnout [6,7]. At the same time, over the past five years, a lot
of evidence has emerged that artificial intelligence (AI) is able to reduce the workload of
radiologists [8–10].

In recent years, there has been a huge leap in the development of AI, and it is used in
a variety of fields, including medicine. Due to widespread digitalization and the transition
from analogue to digital media, diagnostic radiology turned out to be one of the most
promising for introducing AI in the healthcare sector—hundreds of computed tomography
(CT) and magnetic resonance imaging (MRI) scans, X-rays, and others are carried out every
day. Such a huge amount of data contributes to the development of AI systems, their
complexity, and quality improvement [11]. A good example is the experiment on the use of
computer vision innovative technologies for the analysis of medical images and further
application in the Moscow healthcare system [12].

For 3 years, as part of the experiment, AI-based diagnostic services have been suc-
cessfully implemented into the Moscow healthcare system for 27 modalities and target
pathologies. However, such success would not be possible without high-quality datasets,
because they are the basis of each algorithm. Even the most complex and advanced AI
will not be able to perform well if it is not trained on a high-quality dataset, the generation
of which is not an easy task for a team of specialists from different fields. Incorrectly
labeled datasets can lead not only to reduced quality of the AI model, but also to incorrect
assessment of diagnostic accuracy criteria if they are used for testing [13].

In our research, we focused on generating a dataset for training AI systems to identify
signs of ICH, since their underdiagnosis can lead to high disability and even death of
the patient [1]. Often, under a high workload of medical personnel, as happened during
the COVID-19 pandemic, AI systems can play an important role in the promptness of
identifying patients requiring immediate medical attention [14]. Currently, there are already
datasets for detection of the signs of ICH [15,16]. One of the biggest datasets consists of
874,025 CT studies with the presence and absence of signs of various types of ICH [16].
However, datasets, as a rule, either contain incomplete diagnostic studies or have labels not
corresponding to the types of hemorrhages by localization, which are important training
parameters for AI in this category and an important diagnostic task for a radiologist. Also,
they most often do not have an indication of the technical parameters of CT studies, which
can significantly affect the AI quality, as well as some other clinical signs (such as the
multiplicity of hemorrhages or their secondary genesis, for example, hemorrhage in tumor),
the labeling of which can also make the service more accurate.

In addition, before creating a methodology for generating datasets [17], we developed
a natural language processing (NLP) tool aimed at converting text (for example, radiol-
ogy reports) into interpretable datasets for intracranial hemorrhage to allow significant
simplification of the process of data collection and improvement in their quality [18].

Thus, our goal was to generate a dataset of brain CT scans with and without signs of
intracranial hemorrhage, supplemented with clinical and technical parameters for training
artificial intelligence systems.

2. Data Description

The dataset consisted of 800 studies in DICOM format and a table with labeling. In
addition, it was supplemented with information on the types of hemorrhages, associated
pathologies, and technical characteristics, as well as text reports of a radiologist. A class
distribution is presented in Table 1.
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Table 1. Label names of clinical parameters and class distribution in the dataset.

Label Name Number of Classes Class Names Class Distribution

Signs of ICH 1 2 Presence/absence 400/400
Signs of epidural hemorrhage 2 Presence/absence 100/700

Signs of subarachnoid hemorrhage 2 Presence/absence 112/688
Signs of subdural hemorrhage 2 Presence/absence 155/645

Signs of intracerebral hemorrhage 2 Presence/absence 191/609
Signs of multiple hemorrhages 2 one/two or more 265/535

Signs of a skull fracture 2 Presence/absence 124/676
Signs of combined pathologies 2 Presence/absence 23/777

Signs of a break in the cerebrospinal fluid spaces 2 Presence/absence 89/711
Radiology text report Not applicable Presence/absence Not applicable

1 ICH—intracranial hemorrhage.

In addition, the dataset was supplemented with patient age and technical parameters
for each study: Slice Thickness, kVp (kiloVolt Peak), X-ray Tube Current (mA), Convolution
Kernel, Manufacturer (Table 2). A more detailed table with technical parameters is provided
in the Supplementary Materials (Table S1). Please note that the class distribution may differ
quantitatively from the 800 declared CT scans, as it depends on the number/type of series.

Table 2. Label names of technical parameters in the dataset.

Label Name Number of Classes Class Names

Convolution Kernel 28
B, BONE, BONEPLUS, D, FC08, FC09, FC21, FC23, FC26, FC30, FC3 5,
FC62, FC64, FC68, FC81, H31s, H70h, J30s, J37s, J40s, J45s, J80s, SOFT,

STANDARD, Sharp, UB, YA, YB
Slice Thickness 11 0.500, 0.625, 0.750, 0.900, 1.000, 1.250, 1.500, 2.000, 2.500, 3.000, 5.000
Manufacturer 5 GE Medical Systems, Mobius Imaging, Philips, Siemens, Toshiba
kiloVolt Peak 6 80, 100, 120, 130, 135, 140

X-ray Tube Current (mA) 216 25–450

There is less extensive evidence in the literature on the effect of specific physical
parameters on AI performance. However, available sources report that, for example,
various convolution kernels used in chest CT scans may underestimate the AI’s assessment
of cardiovascular risk [19].

Taking into account these technical parameters of each image, in our opinion, can help
to solve the problem of data distribution shift (aka multidomain shift) [20]. This problem
is that data about a particular organ (in our case, the brain) collected at different scan-
ning parameters on different equipment in different clinical settings may not be analyzed
correctly, especially by models that have been trained under empirical risk minimization
(ERM) [21], because ERM assumes that training and testing data are collected in the same
domain (institution) or similar domains (similarly configured diagnostic equipment). To
date, there are approaches (e.g., physics-based data augmentation, PBDA) available to cope
with the challenge of generalizing to new datasets that may be acquired with acquisition
protocols different from the training set. But these approaches are still not able to provide
robust AI performance in terms of, for example, reducing false positive responses when
diagnosing pathologies on lung CT scans [22]. In other words, real CT scans with real
physical parameters are needed for AI pretraining when deployed in clinical practice on
different equipment.

Below are examples of studies containing signs of epidural (Figure 1a), subarachnoid
(Figure 1b), subdural (Figure 1c), intracerebral (Figure 1d), multiple hemorrhages (Figure 1e),
as well as studies with signs of a skull fracture (Figure 1f), combined pathologies (Figure 1g)
and break in the cerebrospinal fluid spaces (Figure 1h).
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Figure 1. Examples of brain CT scans with labels. (a) Brain CT scan with signs of epidural hemor-
rhage in the right hemisphere. (b) Brain CT scan with signs of subarachnoid hemorrhage in both
hemispheres. (c) Brain CT scan with signs of subdural hemorrhage in the right hemisphere. (d) Brain
CT scan with signs of intracerebral hemorrhage in the right hemisphere. (e) Brain CT scan with signs
of multiple hemorrhages (in this case subdural, subarachnoid, intracerebral) in both hemispheres.
(f) Brain CT scan (bone kernel) with signs of frontal bone fracture. (g) Brain CT scan with signs of
combined pathology (in this case, the tumor was complicated by hemorrhage). (h) Brain CT scan
with signs of blood breakthrough into the liquor spaces, indicated by intraventricular hemorrhage.

3. Methods
3.1. Data Collection and Verification Process

The data were obtained from the Unified Radiological Information Service of the Uni-
form Medical Information Analytical System (URIS UMIAS). CT studies were performed
from 5 May 2020 to 1 August 2023.

The study was conducted in accordance with the Declaration of Helsinki and approved
by the Independent Ethics Committee of MRO RORR (protocol code 2/2020, the date of
approval: 20 February 2020; Clinical trial: NCT04489992). The data collection process is
shown in the flowchart (Figure 2).

At the first stage, 4,369,511 text reports of CT studies were uploaded. From these,
brain CTs were selected, which totaled 256,120. The raw data contained missing values,
outliers, and duplicates, which were excluded. For this reason, the number of studies
whose data were included in the sample was 230,682. The inclusion criteria for the sample
were completed text boxes for the description of CT scans, no abnormal values for patient
age, and no duplicate information. All studies were carried out between 00:00:00:00
1 January 2020 and 00:00:00:00 31 May 2023. The minimum age of patients was 18 years
and the maximum was 99 years.
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Figure 2. Data collection flowchart. CT—computed tomography, ICH—intracranial hemorrhage,
NLP—natural language processing.

The considered task of assessing the presence of intracranial hemorrhage from the
results of text protocols of brain CT, regardless of their localization, was a binary classifi-
cation task: hemorrhage present/not present. Data analysis as well as preprocessing was
performed using NLTK (Natural Language Toolkit, version 3.6.5.), a library for symbolic
and statistical processing of natural language, and Scikitlearn, a machine learning library
containing tools for classification tasks. The libraries used, as well as the subsequent al-
gorithm, are written in the Python programming language. This formed the basis for the
creation of natural language processing tool [23].

As an initial sample for machine learning, studies containing keywords relevant to
intracranial hemorrhage in Russian in the description and conclusion were selected. The
key words were generated based on the expert opinion of a specialist radiologist with more
than 3 years of experience in this field.

A key word combined with a negation (stop word or stop phrase) means the absence
of the pathology sought. For this reason, the next step involved a repeated automatic
selection of studies with keywords, resulting in a total of 84,180 studies. A list of 63 stop
phrases was also compiled, whose content in the diagnostic protocols implied the absence
of any intracranial hemorrhage in the study.

From this number, 10,000 diagnostic protocols of brain CT scans were randomly selected.
Then 10,000 CT reports were verified, and 5000 with a presence of a description of

ICH in the report and 5000 without ICH were selected out of them. Verification at this stage
was carried out by radiologists who analyzed text reports.

Criteria for classification:

• With pathology: a presence of ICH description in the text report
• Without pathology: an absence of ICH description in the text report.

A total of 400 studies with signs of ICH and 400 studies without signs of ICH were
randomly selected and verified out of 10,000 studies.

Verification of the final dataset was carried out by a peer review. Two radiologists with
more than 5 years of experience independently analyzed studies. In case of disagreement,
an expert specialized in this field with more than 10 years of experience was involved. If
the third expert experienced difficulties with the identification, CT scans of the patient in
dynamics were analyzed (if available).
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3.1.1. Classification Criteria

1. With pathology:

• Intracerebral hemorrhage (ICH): a CT study reveals a hyperdense area (from +45–50
to 90 HU) of any location and shape, heterogeneous or homogeneous inside the
brain tissue, which can rupture into the intraventricular spaces (intraventricular
hemorrhage);

• Subarachnoid hemorrhage (SAH): in CT scans, hyperdense areas (from +45–50
to 90 HU) of various shapes and sizes are found in the subarachnoid spaces and
cisterns of the brain;

• Subdural hemorrhage (SDH): on CT images, crescent-shaped hyperdense areas
(from +45–50 to 90 HU), homogeneous or heterogeneous in structure, are detected in
the subdural space, or crescent-shaped isodense ones (~35–40 HU), corresponding
to the subacute stage of SDK;

• Epidural hemorrhage (EDH): a CT study reveals biconvex (lenticular) hyperdense
areas (from +45–50 to 90 H units) in the epidural space, often heterogeneous in
structure [24].

2. Without pathology: hyperdense areas (from +45–50 to 90 HU) are not detected either
inside the brain tissues or in the meningeal spaces on CT scans.

3.1.2. Inclusion Criteria

− Patient’s age is at least 18 years;
− Availability of a radiology report of the study with conclusion in the information system;
− Presence of the desired sign of pathology in the images—for selecting studies of the

“presence of pathology” class.

3.1.3. Noninclusion Criteria

− Patient’s age is less than 18 years;
− Absence of a radiology report of the study with conclusion in the information system,
− Inability to reliably determine (by verification) whether the changes on CT scans are

signs of hemorrhage.

3.1.4. Exclusion Criteria

− A presence of image artifacts that could potentially complicate the AI service operation
(dynamic artifacts, bone and/or metal artifacts, artifacts from detector malfunction);

− For studies using contrast enhancement—the absence of a series of CT images from
native phase in the information system.

3.2. Population Parameters and Anonymization

The final dataset included studies of 338 women and 459 men in DICOM format (no
gender data were available for 3 people). The minimum age of participants was 19 years,
the maximum was 100, and the median age was equal to 57.

Data anonymization was carried out by removing an extended list of tags containing
personal information [25] using a special software module. In addition, pseudonymization
was performed by replacing the unique study identifier.

To accomplish a task of complete anonymization of images—defacing, an algorithm
was developed that adds artifacts to an image of the front part of the skull. Artifacts cover
both soft tissue and some parts of bone structures, which are not critical for the clinical
purposes of this dataset. A catalog with a brain study (a series of DICOM files) was fed to
the input of the developed algorithm, and we obtained a study with artifacts at the output.

The algorithm was implemented in Python using libraries for operating with images
and data arrays (numpy, pydicom, skimage). The algorithm processes a study from slice to
slice in the axial projections. Each study is read from a bottom of the head. Artifacts are
added to 60% of the slices of the total number. This approach allows removal of the facial
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structures by which a person’s personality can be recognized (lips, nose, eyes, and their
relationship), without affecting the brain structures.

Let us illustrate the algorithm’s operation on the example of a single slice (Figure 3).
To apply artifacts, the points corresponding to the outer edges of bone structures are
searched. Based on the fact that bone structures have a higher X-ray density, we binarize
an image at the threshold of 490 HU, equating pixels above the threshold to 1, and the
remaining structures become a background (i.e., 0). Next, we fill in the binary area using
the “Convex hull” method. The borders of the resulting area correspond to the edges of the
bone structures in the image.
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Figure 3. Stages of the defacing algorithm: (a)—obtaining an axial slice, (b)—drawing a line to
the facial part of the slice from the centroid, obtaining a point for constructing an artefact (ellipse),
(c)—constructing an ellipse of random size and filling it with specified values, (d)—repeating op-
eration (b,c) for each slice (a), obtaining artefacts across the entire facial part of the skull, (e)—3D
reconstruction of the CT study after running the algorithm for 60% of the slices in axial view.

A centroid is calculated for each area. Next, we draw a straight line from the centroid to
a front of the image and find a point where the border of the area ends and the background
begins. We save this point. We draw nine lines in different directions with a given step.
In total, we obtain 9 points located at the edges of the bone structures. An ellipse is
constructed for each point, which is filled with random values. Ellipses are artifacts
performing anonymization.

Thus, the algorithm runs through each slice, applying artifacts to the edges of bone
structures using the approach described above. The algorithm has a number of limitations.
In particular, when a patient positions his head with a large turn (to the left or to the right),
applying artifacts to the front of the skull, a side of the head is covered instead of the front. This
limitation is overcome manually by shifting a direction of the lines towards a head rotation.

Two experts assessed efficiency of covering with ellipsoidal artifacts for anonymization
of soft tissues and bone structures of the facial skull independently. In addition, a proportion
of slices (60%) to be processed was determined by the expert assessment method.

4. Conclusions

In addition to the diagnostic images themselves, the inclusion of other associated
information in the dataset for training and testing of the AI may reduce the number of
technological defects and increase its clinical relevance. This accompanying information
can be a diagnostic description, a report, information about the CT scanner, a scan protocol,
a unique identification number assigned to each specific study, the age and gender of
the patient, the date of the diagnostic study, the medical institution where the study was
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performed, and additional information (localization of intracranial hemorrhage, skull
bone fractures, test results, etc.). For both training and testing, depending on the clinical
problem to be solved, either the complete dataset or a part of it (image and age/image only,
description, localization, etc.) can be used. A benchmark dataset with a large amount of
additional information about each study can be effectively applied in monitoring AI-based
diagnostic services in operation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/data9020030/s1, Table S1: Class distribution of technical parameters
in the dataset.
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