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Abstract: We performed a multicenter external evaluation of the practical and clinical efficacy of
a commercial AI algorithm for chest X-ray (CXR) analysis (Lunit INSIGHT CXR). A retrospective
evaluation was performed with a multi-reader study. For a prospective evaluation, the AI model
was run on CXR studies; the results were compared to the reports of 226 radiologists. In the multi-
reader study, the area under the curve (AUC), sensitivity, and specificity of the AI were 0.94 (CI95%:
0.87–1.0), 0.9 (CI95%: 0.79–1.0), and 0.89 (CI95%: 0.79–0.98); the AUC, sensitivity, and specificity of
the radiologists were 0.97 (CI95%: 0.94–1.0), 0.9 (CI95%: 0.79–1.0), and 0.95 (CI95%: 0.89–1.0). In
most regions of the ROC curve, the AI performed a little worse or at the same level as an average
human reader. The McNemar test showed no statistically significant differences between AI and
radiologists. In the prospective study with 4752 cases, the AUC, sensitivity, and specificity of the AI
were 0.84 (CI95%: 0.82–0.86), 0.77 (CI95%: 0.73–0.80), and 0.81 (CI95%: 0.80–0.82). Lower accuracy
values obtained during the prospective validation were mainly associated with false-positive findings
considered by experts to be clinically insignificant and the false-negative omission of human-reported
“opacity”, “nodule”, and calcification. In a large-scale prospective validation of the commercial AI
algorithm in clinical practice, lower sensitivity and specificity values were obtained compared to the
prior retrospective evaluation of the data of the same population.

Keywords: AI for chest X-ray first reading; external validation; local test set; prospective validation

1. Introduction

Respiratory diseases are among the leading causes of death [1]. Chest radiography
(CXR) is the most common method of medical imaging. With a high degree of standard-
ization and apparent simplicity of CXR, sensitivity is of great importance. The “double
reading” method is used to minimize the false-negative results [2,3].

During the SARS-CoV-2 (COVID-19) pandemic, the burden on the healthcare system
was manifested by a shortage of medical personnel, with the increased number of imaging
studies, leading to a reduction in the time available for reporting, which pushes the increase
in human errors [4].

In this situation, algorithms based on artificial intelligence (AI) capable of detecting
pathology in CXR are of great practical importance. CXR meets the three main criteria for
deploying AI systems: mass use, relative standardization, and digitalization. Furthermore,
an AI system can serve as a clinical decision support system (CDSS) [5,6].

The diagnostic accuracy of the algorithms provided by the developers is quite high [7–9],
reaching the same accuracy for radiologists [10], and for some solutions even exceeding
them [11,12]. As of the beginning of 2023, 29 AI-based software products have European

Diagnostics 2023, 13, 1430. https://doi.org/10.3390/diagnostics13081430 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13081430
https://doi.org/10.3390/diagnostics13081430
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-7786-0349
https://doi.org/10.3390/diagnostics13081430
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13081430?type=check_update&version=1


Diagnostics 2023, 13, 1430 2 of 13

certification for medical use as a medical device (CE MDR/MDD), of which 11 have
passed a similar certification in the United States [13]. It is important to note that one
such software product, approved for circulation as a medical device, is intended for a
completely autonomous analysis of CXR [14]. This AI algorithm sorts examinations, detects
CXR without pathology, and forms a complete description protocol that does not require
validation by a radiologist; this approach reduces the burden on the radiologist, allowing
them to focus on cases with pathologies [11].

The problem is that most of the work on assessing the diagnostic accuracy of AI
algorithms for CXR indicates metrics obtained by developers on limited datasets in the
so-called “laboratory conditions”. As can be seen from recent studies [12,15], the metrics
obtained in this way look attractive for the subsequent implementation of such algorithms
in clinical practice. Will AI for CXR analysis also work well and demonstrate high diagnostic
accuracy metrics in real clinical practice? There are very few large-scale works on this
topic; it is possible to point out only a few studies [11,16]. Using recent research as an
example, we can see the introduction of autonomous AI into clinical practice, but the issue
of threshold values for diagnostic accuracy metrics remains open.

Despite the extensive possibilities of using AI for CXR analysis [17], the influence of
surrounding clinical information on the result remains understudied, especially given the
trend toward controlling systematic errors in radiology [18].

We assessed the practical and clinical efficacy of the AI algorithm for CXR analysis
on external data by conducting a two-stage multicenter study: a retrospective case-control
study and a prospective validation study.

2. Materials and Methods

This study includes the data from a registered clinical trial NCT04489992. The local
independent Ethics Committee approved the study, and all data were de-identified. The
overall study flowchart is presented in Figure 1.

The study consisted of two parts: a retrospective evaluation (right side of Figure 1)
and a prospective evaluation (left side of Figure 1) of the diagnostic accuracy metrics of the
AI system. The retrospective study was designed as an international multi-reader study,
which has been performed to determine an average diagnostic accuracy of radiologists
interpreting chest X-ray images and AI system performance metrics for the same use cases.
In a prospective study, patient studies were processed by an on-stream AI system. The
result of the work of the AI system was compared for the entire volume of studies with the
conclusion of a radiologist. To ensure quality control, a sample of prospective studies was
formed and was sent for expert evaluation of the correctness of the initial description of the
study by a radiologist. The obtained values of diagnostic accuracy metrics were compared
with those for a retrospective study.

2.1. AI System

A certified, commercially available AI system was used: Lunit INSIGHT CXR for
Chest Radiography Version 3.110, Lunit, Seoul, Republic of Korea. The AI system used a
ResNet34-based deep convolutional neural network with 10 different abnormality specific
channels in the final layer [19] Additional information about the AI system is available on
the official website [20]. The AI system detects ten radiological findings: atelectasis, calcifi-
cation, cardiomegaly, consolidation, fibrosis, mediastinal widening, nodule, pneumothorax,
pleural effusion, and pneumoperitoneum.

2.2. Retrospective Evaluation

A retrospective evaluation was performed by a multi-reader study to compare the
diagnostic performance of AI and radiologists (see Table 1, column ‘Local test set’). A
total of 160 certified radiologists participated in the study {years of experience [0–1): 39,
[1–5): 49, [5–10): 30, 10+: 42} and interpreted 73 cases from a retrospectively collected
local test set containing imaging data of the Moscow population. Each case was evalu-
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ated 46 times on average. The scoring was conducted using a 4-point scale: (1) definitely
without pathology (probability of pathology—0%); (2) probably without pathology (proba-
bility of pathology—33%); (3) probably with pathology (probability of pathology—66%);
(4) definitely with pathology (probability of pathology—100%). A consensus score per case
was set based on the median reader score. In the case of a tie of frequencies, the higher
score was selected. The readers were supplied with the patient sex and age information
while reading the studies.
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of studies.

The local test set has been collected retrospectively from the radiological studies per-
formed in outpatient Moscow state medical facilities for screening and diagnostic purposes
in 2018–2019. These studies were obtained from 38 diagnostic devices from 7 vendors
(Table 1). The dataset contained studies marked “without target pathology” and “with
target pathology.” Target pathology is defined as a list of radiological findings based on
clinical significance and frequency of occurrence in the routine practice of multidisciplinary
medical facilities. All studies were pre-selected randomly based on electronic medical
records and then evaluated in double consensus by radiology experts with at least five
years of experience in thoracic radiology.
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Table 1. Details on the retrospective local test set and prospective dataset.

Characteristic Local Test Set Prospective Dataset
Sample from the Prospective

Dataset Additionally
Interpreted by Experts

No. of patients
(abnormal * cases) 73 (29) 4752 (694) 378 (185)

Number of radiologists 160 (average 46 per study) 226 (1 per study) 99 (1 per study)
Confirmation of
(ab)normality by

consensus two experts
(>5 years of experience) radiology report consensus of at least two experts

(>5 years of experience)
Male/female/unknown 30/42/1 1746/3005/1 140/238

Age (y) ** 50 ± 19 49 ± 16 55 ± 17
No. of diagnostic devices 38 113 79

Vendors

GE HealthCare, Chicago, IL, USA
S.P.Helpic LLC, Moscow, Russia

Fujifilm, Tokyo, Japan
Philips, Amsterdam, The Netherlands

Toshiba Medical Systems Corporation, Tokyo, Japan
NIPK Electron Co., Saint Petersburg, Russia

MEDICAL TECHNOLOGIES Co., Ltd., Moscow, Russia.

* Abnormal case contained at least one of the following radiologic findings: (1) pleural effusion; (2) pneumothorax;
(3) atelectasis; (4) opacity; (5) opacity/consolidation; (6) dissemination (>20 focal abnormalities); (7) cavity with air;
(8) cavity with fluid level; (9) pulmonary calcification; (10) bone fracture. ** Data are mean + standard deviation.
Data in parentheses are the range.

Inclusion criteria for the studies: (1) age over 18 years old; (2) DICOM format and
anonymized; (3) an anterior-posterior/posterior-anterior view; (4) available results of AI
analysis, (5) double consensus between two expert radiologists on the presence or absence
of the target pathology.

Exclusion criteria: (1) post-lung surgery, including one lung remaining; (2) additional
opacifications from medical devices, clothes, and extracorporeal objects; (3) technical defects
or incorrect positioning; (4) absence of the expert consensus.

The list of the pathological CXR findings was used with terminology proposed by the
Fleischner society [21] and completed with common significant findings out of the glossary:

• Pneumothorax;
• Atelectasis;
• Parenchymal opacification;
• Infiltrate or consolidation (infiltrate remains a controversial but applied term);
• Miliary pattern, or dissemination;
• Cavity;
• Pulmonary calcification;
• Pleural effusion;
• Fracture, or cortical irregularity.

More details on the local test set are presented in Table 1.

2.3. Prospective Evaluation

For a prospective evaluation, the AI was deployed for “research purposes only” with
DICOM secondary capture (SC) available for each processed study in 10 inpatients and
97 outpatient departments in Moscow (Russia) via Unified Radiological Information Service
(URIS), connecting all the state radiology sites of the Moscow Healthcare department [22,23].
The AI model was used to analyze incoming CXR studies during November and December
2020, and its results were compared to the reports of 226 radiologists. Only DICOM
files were provided to AI. The AI consecutively analyzed 5373 studies. Studies were
automatically routed to the AI using the following algorithm: (1) the study performed on the
diagnostic device was sent to URIS and simultaneously became available for downloading
and processing by the AI; (2) after processing the study, the AI returned the DICOM SC
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to URIS. Studies were processed sequentially from the queue. Inclusion criteria for the
studies: (1) age over 18 years old; (2) DICOM format and anonymized; (3) an anterior-
posterior/posterior-anterior view; (4) available results of AI analysis. A total of 621 were
later excluded from the prospective evaluation (Figure 1) due to the technical defects,
namely a lateral view or patient rotation (Figure 2) and different anatomical areas visualized.
The final prospective dataset contained 4752 studies from 113 diagnostic devices (Table 1).
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Figure 2. Examples of the technical defects: lateral instead of frontal projection was analyzed by the
AI system (a); the image with relevant radiological findings is rotated, and the study was reported by
a radiologist as having right lower lobe opacity (b).

The radiologists’ reports of 4752 cases were classified as containing or not containing
a description of CXR abnormalities via a home-built machine-based text analysis tool [24].
All cases were analyzed in terms of the target pathologies. Therefore, only a single CXR
reading result was used as ground truth. We performed additional testing to confirm the
possibility of using a single radiologist reading as the ground truth for the prospective
evaluation. A subset of the AI cases from prospective study (378 from 4752) was interpreted
by three experts (level of experience in thoracic radiology > 5 years): 97 random cases
for which AI results and radiology reports matched and 281 random cases when AI and
radiologist’ conclusions deviated (Table 1 and Figure 1). The AI results were classified
as normal/abnormal according to the threshold determined on the prospective dataset
through ROC analysis. At least two experts interpreted each case with blinding. Cases
were assigned to the experts randomly. In case of disagreement between the two experts, a
third expert made the final decision, being aware of the opinions of the two experts.

2.4. Statistical Analysis

The performance of the AI system was assessed by generating a receiver operating
characteristic (ROC) curve from the AI system and radiologist scores. The area under
the ROC curve is reported with 95% confidence intervals (CI 95%). Similarly, reader
performance was evaluated by thresholding at different score levels to generate ROC
points. Confidence intervals were calculated by the Delong method [25]. For ROC analysis,
the web tool https://roc-analysis.mosmed.ai/ (accessed on 1 February 2023) was used. The
ground true (GT) value was ‘0’ for ‘no pathology’ and ‘1’ for target pathology. To conduct
the ROC analysis, the value of the probability of pathology was used as a response from
the AI system. For radiologists within the framework of the multi-reader study—also a

https://roc-analysis.mosmed.ai/
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probabilistic scale. When evaluating the diagnostic accuracy metrics of radiologists from a
prospective subsample, binary values of the presence or absence of pathology were used.

The p-value was calculated by McNemar’s test. McNemar’s one degree of freedom
chi-square test for the equality of proportions is applied for the analysis of matched, binary
outcome data [26]. We selected McNemar’s test because AI and human readers analyzed
the same data. Finally, the maximum of the Youden Index was used to determine the
threshold value for the scores of radiologists and AI [27,28]. For this threshold, sensitivity
and specificity were calculated.

The consistency of the binary estimates was determined by an agreement (the propor-
tion of matched estimates) and reliability with Cohen’s kappa coefficient with a CI of 95%.
The consistency was calculated between AI, radiologists, and experts.

3. Results
3.1. Retrospective Evaluation

The ROC results for all readers and the AI system are shown in Figure 3, green.
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Figure 3. Receiver operator characteristic curves for multi-reader study (green) and AI performance
on the local test set (purple), prospective performance of AI (blue). Receiver operator characteristic
curve for radiologists on the sample from the prospective dataset for expert interpretation (yellow).

The AI system achieved an area under the ROC curve of 0.94 (0.87–1.0)—Figure 3,
purple. In most regions of the ROC curve, the system performed a little worse than or
at the same level as the average human reader. However, the McNemar test showed no
statistically significant differences (Table 2).

Table 2. The human and AI system diagnostic performance metrics: multi-reader study.

Diagnostic Performance Metrics AI System Human Readers p-Value

AUC (CI 95%) 0.94 (0.87–1.0) 0.97 (0.94–1.0) 0.51

Sensitivity * (CI 95%) 0.9 (0.79–1.0) 0.9 (0.79–1.0) 1.0

Specificity * (CI 95%) 0.89 (0.79–0.98) 0.95 (0.89–1.0) 0.26

Cappa Kohen * for GT 0.74 (0.58–0.9) 0.86 (0.74–0.98)
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Table 2. Cont.

Diagnostic Performance Metrics AI System Human Readers p-Value

Agreement * for GT 93% 88%

Cohen’s Kappa * for radiologists and AI 0.71 (0.54–0.88)

Agreement * for radiologists and AI 86%

* at the operating point of the maximum Youden index. The threshold for AI was 0.5 (Youden index was 0.78),
and 3 for human readers (Youden index was 0.85).

3.2. Prospective Evaluation

The AUC was 0.84 (0.82–0.86) according to the 4752 studies available for analysis.
Thus, the prospective ROC curve recalculated using the Youden index threshold, had
a sensitivity of 0.77 (0.73–0.80) and a specificity of 0.81 (0.80–0.82). The ROC curve for
determining the presence of pathology is shown in Figure 3, blue.

The prospective evaluation of the AI was based on the study reports with a single
reading. To verify the performance of AI in such conditions during the prospective eval-
uation, a randomized expert review was initiated. The review showed high reliability
between experts and radiologists with a Cohen’s kappa equal to 0.79 (0.72–0.85). A Cohen’s
kappa ≥ 0.8 corresponds to the “perfect” strength of reliability, according to Landis and
Koch [29]. Moreover, during the prospective evaluation, the sensitivity and specificity of
radiologists were 0.86 (0.82–0.91) and 0.92 (0.88–0.96), respectively, and matched the aver-
aged multi-reader study radiologist performance within the confidence intervals (Table 3).
The three-point ROC results for radiologists on this subset are shown in Figure 3, yellow.

Table 3. The human and AI system diagnostic performance metrics: prospective dataset.

Diagnostic Performance Metrics AI System Human Readers (Sample from the Prospective
Dataset for Expert Interpretation)

AUC (CI 95%) 0.84 (0.82–0.86) 0.89 (0.86–0.92)

Sensitivity (CI 95%) 0.77 * (0.73–0.80) 0.86 ** (0.82–0.91)

Specificity (CI 95%) 0.81 * (0.80–0.82) 0.92 ** (0.88–0.96)

Cappa Kohen * for radiologists and AI 0.42 (0.38–0.45)

Agreement * for radiologists and AI 81%

Cohen’s Kappa ** for radiologists and experts 0.79 (0.72–0.85)

Agreement ** for radiologists and experts 89%

* at the operating point of the maximum Youden index. The threshold for AI was 0.17 (Youden index was 0.58).
** at the operating point of the maximum Youden index. The threshold for human readers was 1 (Youden index
was 0.79).

We observed that in expert or consensus-confirmed false-positive results (153 cases),
the AI system had detected atelectasis, cardiomegaly, consolidation, fibrosis, and calcifi-
cations in the vast majority of cases (139 cases–91%). However, these findings were not
reported, either undetected because of small size or unreported due to subjective low
clinical significance.

For 104 false-negative cases (81%), reports described either “opacity” (lung inflamma-
tion term encompassing consolidation) or “nodule/mass”, as well as calcification.

Selected false-positive (Figure 4a,b), false-negative (Figure 4c,d), and true-positive
(Figure 4e), true-negative (Figure 4f) examples are provided in Figure 4.



Diagnostics 2023, 13, 1430 8 of 13Diagnostics 2023, 12, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 4. Examples of the (a,b) false-positive and (c,d) false-negative and (e) true-positive, (f) true-
negative cases of the AI system: (a) patient rotation and hiatal hernia, AI erroneously detected me-
diastinal widening and nodule; (b) female patient with visible nipples, AI detected right-sided lung 
nodule with high probability and left-sided nodule with lower probability, but radiologist did not 
report any pathology; (c) left-sided opacity reported by a radiologist and not reported by AI; (d) 
cardiomegaly reported by radiologist and not reported by AI; (e) a nodule at the apex of the right 
lung (calcinate); (f) study without pathology, correctly reported by AI, but erroneously reported by 
radiologist as an inflammatory process in the right lung (experts did not report pathological 
changes, which was confirmed by subsequent computed tomography). 

4. Discussion 
We determined the diagnostic accuracy of the commercial AI solution (Lunit IN-

SIGHT CXR) for both retrospective (multi-reader multi-case) and prospective studies. 
This corresponds to the capability (local test set) and durability (prospective study) stages 
proposed by Larson et al. in their study [30]. It should be noted that the multi-reader study 
was based on only a limited set of cases, selected explicitly knowing the capabilities and 
requirements of the AI system and subjected to peer review. Thus, the dataset contained 
only “benchmark cases” without ambiguous results or technical defects that might be pre-
sent in routine practice. The bulk of scientific publications on the performance of AI solu-
tions is based on benchmarked, thoroughly verified datasets. We were able to assess the 

Figure 4. Examples of the (a,b) false-positive and (c,d) false-negative and (e) true-positive, (f) true-
negative cases of the AI system: (a) patient rotation and hiatal hernia, AI erroneously detected
mediastinal widening and nodule; (b) female patient with visible nipples, AI detected right-sided
lung nodule with high probability and left-sided nodule with lower probability, but radiologist did
not report any pathology; (c) left-sided opacity reported by a radiologist and not reported by AI;
(d) cardiomegaly reported by radiologist and not reported by AI; (e) a nodule at the apex of the right
lung (calcinate); (f) study without pathology, correctly reported by AI, but erroneously reported by
radiologist as an inflammatory process in the right lung (experts did not report pathological changes,
which was confirmed by subsequent computed tomography).

4. Discussion

We determined the diagnostic accuracy of the commercial AI solution (Lunit INSIGHT
CXR) for both retrospective (multi-reader multi-case) and prospective studies. This corre-
sponds to the capability (local test set) and durability (prospective study) stages proposed
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by Larson et al. in their study [30]. It should be noted that the multi-reader study was
based on only a limited set of cases, selected explicitly knowing the capabilities and re-
quirements of the AI system and subjected to peer review. Thus, the dataset contained
only “benchmark cases” without ambiguous results or technical defects that might be
present in routine practice. The bulk of scientific publications on the performance of AI
solutions is based on benchmarked, thoroughly verified datasets. We were able to assess
the performance of AI in “real” conditions, identical to those in which radiologists work.
Our findings suggest that the tested AI system should only be implemented in scenarios of
significant staff shortage, as its diagnostic performance had not fully matched the human
interpretation in the prospective study. Below, we offer several ways to improve the quality
of CXR AI systems.

4.1. Additional Data and Technical Assessment of the Quality of Input CXR

Usually, CXR is performed in two projections-frontal and lateral. Thus, a radiolo-
gist has an additional source of diagnostic information in ambiguous cases. However,
when analyzing the AI results, we excluded cases in which the lateral projection was
processed because the AI is only intended for frontal CXR and detects a limited pathology
set (10 findings). Therefore, some pathological changes are undetected, including fractures,
hiatal hernia, interstitial lung disease, adenopathy, emphysema, pleural plaques, free air
under diaphragm, tube or catheter malposition, and foreign bodies. Our results may have
been affected by the COVID-19 pandemic, as diagnosing viral pneumonia with pulmonary
infiltrates was not available via the evaluated AI system. We believe this flaw has already
been fixed in the current version of AI systems. For example, qXR v2.1 c2 (Qure.ai Tech-
nologies) is already able to process lateral projection, increasing the accuracy of identifying
individual pathological signs [15].

The example with incorrect processing of the lateral projection clearly showed the
need for preprocessing the image in order to filter the input data. In the current AI
implementation, the system is tag-oriented; if the tags are correct, then the input image
is chosen correctly. However, if they contain errors due to the human factor, then the
algorithm can be fed an image with a completely different projection or anatomical region.
With the mass introduction of autonomous AI systems, it is imperative to implement a
quality control system for the input image. We recommend performing quality control of
the input data on the AI side to ensure AI safety as a stand-alone regardless of the use case.

Over the past three years, many studies have shown the possibilities for AI appli-
cation in radiology as CDSS or even as a second reading. Nevertheless, to justify the
possibility of using AI algorithms on par with a radiologist, it is necessary to solve several
problems [31]. These problems include the lack of a unified methodological framework
(external datasets, difficulty preparing datasets and comparing with human performance),
lack of standardized nomenclature, and heterogeneous outcome measures (area under the
receiver operating characteristic, sensitivity, positive predictive value, and F1 score). We
have considered all the requirements from the “Reporting guidelines for clinical trial reports
for interventions involving artificial intelligence” [32]. Apart from the AI performance
metrics, we focused on error analysis, described how poor or unavailable input data were
evaluated and processed, and clarified whether human–AI interaction occurred during
input data processing and what skill level was required.

4.2. Comprehensive Assessment of Identified Radiographic Features

The high performance of the AI system evaluated in our study has been previously
reported [33–35]. In our study, we obtained reliable data on sensitivity, specificity, and
accuracy. We observed variability in the assessment of the same study by different radiolo-
gists. Sometimes mild linear atelectasis, cardiomegaly, and fibrosis were not reported in
the “conclusion” part of the report, likely due to their low prognostic value. However, the
clinical importance of such findings may be addressed via the integration of clinical data,
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such as patient gender, age, and frequency of pathological findings in these subgroups, into
computer vision algorithms.

For instance, for age-related patients with clinically insignificant changes, such as
fibrosis, a radiologist can often write the ‘age norm’ in the conclusion. In fact, the term ‘Age
Conditional Norm’ indicates the absence of changes that require additional appointments
from the general practitioner. Any AI system currently used in CXR analysis solves two
sequential tasks: change detection and its classification. To correctly classify CXR with age-
related changes, information about the patient’s age can be fed to the input of the classifier.

In this regard, we would like to give an example of a study by A. Akselrod-Ballin
et al. (2019), who, using the example of AI for mammography, showed that incorporating
additional clinical data can improve the diagnostic quality of the AI system [36]. An
algorithm that can assess the pathology not only on a binary scale (present/absent) but
also provides information on its prevalence in the population may have increased clinical
value for CXR.

4.3. Fine-Tuning of AI System

Although AI can be optimized for a specific task, there are little data in the literature
on how to tune them. However, tuning an AI system can be achieved relatively easily using
ROC analysis. The output of the AI algorithm is a probability of pathology, and finding the
optimal threshold value involves determining the probability value above which the study
will be classified as pathological and below as normal. The higher the threshold, the more
specific the AI system will be, and the lower, the more sensitive. The question remains, what
values of diagnostic accuracy metrics should be considered optimal? Certain guidelines
state that a threshold of 0.81 must be exceeded for all diagnostic accuracy metrics [37]. In
our multi-reader study on a retrospective set of studies, we obtained significantly higher
values: sensitivity of 0.9, specificity of 0.95, and AUC of 0.97. According to these AI metrics,
the system did not differ significantly from the average radiologist. This indicates the
possibility of setting a minimum bar for diagnostic input accuracy for AI systems on a
limited dataset of 0.9. The latest review [38] shows that of the 46 AI systems examined,
18 (39%) exceed 0.9 in terms of diagnostic accuracy metrics.

Evaluation of the prospective study showed a decrease in the diagnostic accuracy
metrics of the AI system compared to a radiologist. In this case, the following solution is
possible: changing the threshold of the AI to match either the sensitivity of the radiologist
or its specificity. When maximizing the sensitivity of the AI algorithm, we believe that it
is possible to use it for primary CXR reading to sort out studies without pathology. The
increase in negative predictive value would lead to patient list optimization and, possibly,
reduce the professional burnout of radiologists. The proposed use case requires a separate
study with simulated triage, analogous to Sverzellati N. et al. (2021) [39].

Considering practical options for AI application, several conclusions can be drawn.
First, AI-based first reading can be a viable option in cases of staff shortages, provided
that the AI is calibrated to achieve a sensitivity level comparable to that of radiologists.
However, further improvements are needed to increase the diagnostic value of the AI
system in clinical practice. Additionally, prioritizing AI findings based on their clinical
significance, particularly in cases where multiple findings are present, is recommended. For
instance, the presence of a single calcification or fibrosis may not have significant clinical
value, whereas the presence of calcification and fibrosis, particularly in the upper and
middle lung lobes, could indicate pulmonary tuberculosis, a socially significant disease
that is routinely screened for in different countries.

5. Conclusions

In a large-scale prospective validation of the commercial AI algorithm in clinical
practice, lower sensitivity and specificity values were obtained compared to a retrospective
study on the local test set. The lower prospective performance was associated with an
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increased number of findings considered by experts to be clinically insignificant, including
mild atelectasis, cardiomegaly, and consolidation.
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