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Abstract. The total volume of Epicardial Adipose Tissue (EAT) is a
well-known independent early marker of coronary heart disease. Though
several deep learning methods were proposed for CT-based EAT volume
estimation with promising results recently, automatic EAT quantifica-
tion on screening Low-Dose CT (LDCT) has not been studied. We first AQ1

systematically investigate a deep-learning-based approach for EAT quan-
tification on challenging noisy LDCT images using a large dataset con-
sisting of 493 LDCT and 154 CT studies from 569 subjects. Our results
demonstrate that (1) 3D U-net precisely segment the pericardium inte-
rior region (Dice score 0.95 ± 0.00); (2) postprocessing based on narrow
1-mm Gaussian filter does not require adjustments of EAT Hounsfield
interval and leads to accurate estimation of EAT volume (Pearson’s R
0.96 ± 0.01) comparing to CT-based manual EAT assessment for the
same subjects.

Keywords: Epicardial fat · Low-dose CT · Deep learning

1 Introduction

Coronary heart disease (CHD) remains the leading cause of death and disability
worldwide [8]. The primary pathological process leading to the development
of CHD is coronary artery atherosclerosis, an inflammatory disease associated
with lipid deposits in the vascular walls [1]. According to the results of the
Multi-Ethnic Study of Atherosclerosis (MESA), the amount of adipose tissue
surrounding the heart - pericardial adipose tissue - is an independent predictor
of CHD [4]. Pericardial adipose tissue includes epicardial adipose tissue (EAT)
located inside the pericardial contour and paracardial adipose tissue located
outside and adjacent to the pericardium.

For a long time, CHD is asymptomatic and manifests at late stages with
myocardial infarction or sudden death, so it is crucial to determine disease pre-
dictors even before the symptoms appear. The primary approach to addressing
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Su et al. (Eds.): MICAD 2021, LNEE 784, pp. 1–10, 2022.
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this issue is the organization of mass preventive examinations. Since “large-scale
screening” excludes the use of invasive diagnostic methods due to labor intensity,
high cost, and risks of complications, the possibilities of noninvasive diagnostic
techniques have attracted wide attention from the scientific community. EAT
can be assessed by echocardiography (EchoCG), computed tomography (CT),
and magnetic resonance imaging (MRI). EchoCG is not an optimal method to
quantify EAT because of low reproducibility [9]. Cardiac MRI is an expensive
and time-consuming procedure [5]. Traditionally, EAT is assessed by CT scan
triggered by an electrocardiogram (ECG) with or without intravenous contrast
agent [15]; non-ECG CT scan can also be used for EAT quantification as a
reliable and reproducible predictor for CHD [17].

Recently, several deep-learning-based methods were proposed for EAT quan-
tification for non-ECG-triggered CT scans. The majority of works consist of
two steps: (1) pericardium delineation or segmentation of Pericardium Interior
Region (PIR) segmentation followed by (2) estimation of EAT mask by simple
thresholding of Hounsfield Units (HU). Also, a simple median filter is used for CT
to suppress noise before thresholding in many works. A comprehensive approach
with two convolutional neural networks was proposed in [2] and later replaced by
a single multitask network in [3], subsequent work of the same authors. In both
works, EAT quantification perfectly correlated with manual estimation (Pear-
son’s R was 0.97). At the same time, a simpler 3D U-Net with attention was
successfully used in [7] where authors reported Dice score 0.85± 0.05 for a small
training sample of 40 subjects.

However, standard CT is associated with high radiation exposure and can
not be used for screening. At the same time, as EAT reflects early signs of the
disease, an automatic tool for a screening examination such as low-dose chest CT
(LDCT) is required. To date, there have been only a few studies demonstrating
the possibility of using non-ECG-gated low-dose chest CT for EAT volumetry
[11,19]. However, these studies use labor- and time-consuming semi-automatic
techniques, which complicates their implementation within clinical settings. The
previously described automatic technique had been validated only for standard
ECG-gated CT, not used for screening [2]. Finally, despite substantial progress
in researching CT-oriented methods, automatic LDCT-based EAT volumetry in
screening patients remains highly relevant.

From the technical point of view, LDCT is much noisier than CT, and this
difference may affect both abovementioned steps of the pipeline

1. Worse quality of images may result in deterioration of pericardium detection
or PIR segmentation quality.

2. Presence of noise may make EAT mask estimation via thresholding more
challenging. Besides, the difference in scanning protocol may result in a sys-
tematic shift of HU intensities, as was shown for EAT quantification in [12]
where a modified upper HU threshold showed the best match with CT-based
estimations.

We aim to study both effects systematically to validate the deep learning-based
method’s applicability for automatic estimation of EAT volume on LDCT.
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Quantification of Epicardial Adipose Tissue in Low-Dose CT 3

Our contributions are as follows. (1) We first developed and tested a pipeline
for EAT quantification in LDCT. (2) We show that a simple 3D Unet achieves
the excellent quality of PIR segmentation approaching expert’s variability. (3)
We studied several post-processing approaches and identified that (a) popular
median filtering results in a systematic shift of intensities and (b) a Gaussian
filter with the standard EAT HU-range provides an excellent EAT estimation
with Pearson’s R 0.96 ± 0.01 comparing to CT-based manual EAT assessment
for the same subjects.

2 Data

Our data includes standard-dose chest CT and LDCT; the latter images were
collected within a lung cancer screening pilot [16]; the radiation dose for all cases
is less than one mSv. Scanning with both CT types was performed on Toshiba
Aquilion 64 (Canon medical systems, Japan), with a rotation time of 0.5 sec,
slice thickness 1 mm, and convolution kernel (FC07, FC51). The main differences
between CT and LDCT protocols were (1) voltage: 120 kV vs. 135 kV, (2) X-ray
tube current: automatic tube modulation vs. up to 25 mA, and (3) radiation
dose: 7–8 mSv vs. less than 1 mSv.

Some CT and LDCT images (see details below) were annotated in an in-house
tool conceptually close to the methodology described in [13]. Ten radiologists
annotated CT and LDCT images by drawing pericardium contours on axial
slices with the help of inter-slice interpolation. At least two readers annotated
every study.

We use four datasets to conduct computational experiments; see more details
of its usage in Sect. 3.

– Labeled-LDCT. 415 annotated LDCT studies. The main training dataset.
– Labeled-CT. 76 annotated chest CT studies. An auxiliary dataset to compare

pericardium interior segmentation quality for CT and LDCT images.
– Unlabeled-Paired. 57 non annotated pairs CT-LDCT; each pair consists of

CT study and LDCT study collected from the same subject with no more
than 60 days between studies. The primary dataset for experimenting with
the second pipeline step - different postprocessing approaches.

– Labeled-Paired. 21 annotated pairs CT-LDCT prepared using the same app-
roach as Unlabeled-Paired. Hold-out dataset designated exclusively for testing
of final models.

Patients cohorts were selected carefully to guarantee zero intersections
between datasets and avoid possible data leaks.

3 Experimental Setup

As discussed in Sect. 1, the authors of [2,3] split their method for estimating
EAT volume in thoracic CT images into two following consecutive steps.
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4 M. Goncharov et al.

1. Segmentation of the interior region of the pericardium via CNN.
2. Postprocessing, which includes applying median filter with a 3 × 3 kernel

size to each axial slice of the CT image and calculating the volume of the
EAT thresholded as voxels inside pericardium with intensity in range [l, u] =
[−190,−30]HU. We refer to this postprocessing step as Median-Thresholding
(l, u).

We aim to adapt and validate this two-step approach in LDCT images. There-
fore, we design our experiments as follows.

– First, we train and validate a CNN for PIR segmentation in both low-dose and
full-dose CT images. As we show in Sect. 4, this network followed by Median-
Thresholding (−190,−30) successfully quantifies EAT volume in full-dose CT
images. We describe details in Sect. 3.1.

– Then, we use the trained CNN to delineate pericardiums in both low-dose and
full-dose CT images from the Unlabeled-Paired dataset. For each patient, we
quantify EAT inside the predicted pericardium in the full-dose CT image
using Median-Thresholding (−190,−30). Taking these volumes as ground
truth, we calibrate postprocessing step for estimating EAT volumes in the
low-dose CT images. See details in Sect. 3.2.

– Finally, we test the CNN followed by the calibrated postprocessing in low-
dose CT images from the Labeled-Paired dataset. As a ground truth we take
EAT volumes calculated in full-dose CT images using manually annotated
pericardiums and Median-Thresholding (−190,−30).

3.1 Pericardium Interior Region Segmentation

Our network for segmentation of PIR has a 3D U-Net [18] architecture which
is a de facto standard for medical image segmentation. We replace plain convo-
lutional layers with residual blocks [6]. In upsampling branch of U-Net, we also
replace transposed convolutions with simple trilinear interpolation.

We split all the images from Labeled-CT and Labeled-LDCT using 5-fold
cross-validation in a stratified by dose (low or full) manner. For each split we
train a single network on both low-dose and full-dose images. As mentioned
in Sect. 2, patients in Labeled-CT and Labeled-LDCT datasets are unique and
do not intersect with each other and with patients from Unlabeled-Paired and
Labeled-Paired datasets. Therefore, training setup excludes overfitting to the
validation and test sets.

Before feeding thoracic CT images to the network, we preprocess them in
the following steps. First, we crop each axial CT slice to the bounding box of
the pixels with intensities greater than −500 HU, which is in fact the body
bounding box. Then, we trilinearly interpolate the cropped 3D image, such that
resulting image has a 2× 2× 3 mm3 voxel spacing. Finally, we clip intensities to
a [−200, 200] HU window and scale them to the [0, 1] range.

We train the network for 15k batches of size 3 using Adam optimizer [10]
with default parameters and a learning rate of 3 · 10−4. As a loss function we
use a sum of binary cross entropy and dice loss [14] weighted by 0.1.
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Quantification of Epicardial Adipose Tissue in Low-Dose CT 5

To assess the quality of pericardium prediction we calculate the average Dice
scores between the network’s predictions and the ground truth PIR masks, sep-
arately for low-dose and full-dose images, in each validation fold. In Sect. 4.1
we report the mean value and standard deviation of these Dice scores along 5
folds. Also, for each image, we calculate the average Dice score between multiple
ground truth masks annotated by different radiologists. In Sect. 4.1 we report
the mean values of these inter-rater Dice scores on the Labeled-CT and Labeled-
LDCT datasets as a strong baseline for predictions’ Dice scores.

Also, we assess the quality of EAT volume estimation in full-dose CT images
using network’s pericardium predictions and Median-Thresholding (−190,−30).
As a ground truth we use EAT volumes calculated using annotated ground
truth pericardiums and Median-Thresholding (−190,−30). As quality metrics
we calculate mean absolute errors, and Pearson’s correlation between predicted
and ground truth volumes in each validation fold. In Sect. 4.1 we report the
mean values and the standard deviations of these metrics along 5 folds. Also,
we report the inter-rater mean absolute errors for the ground truth volumes in
Labeled-CT dataset.

3.2 Postprocessing Calibration for LDCT

A postprocessing step takes a CT image and the PIR mask as inputs and aims
to assign 1 to fat voxels inside pericardium, and 0 to other voxels. After that,
EAT volume is calculated as a sum of positive voxels’ volumes.

Fig. 1. From left to right: (A) - a patch of an axial low-dose CT slice containing the
heart; (B) - the PIR mask predicted via 3D U-Net; (C), (D), and (E) - the fat voxels
inside pericardium obtained via Näıve-Thresholding (−190, −30), Median-Thresholding
(−190, −30), and Gaussian-Thresholding (−190, −30, σ = 1 mm), correspondingly.

The most straightforward approach for postprocessing is to exclude voxels
with the original CT intensity beyond range [l, u] from the PIR. We refer to
this approach as Näıve-Thresholding (l, u). However, it results in errors due to
noise in CT images, especially low-dose CT images (see Fig. 1(C)). Therefore, in
[2,3] authors apply Median-Thresholding (−190,−30) as an attempt to eliminate
noise effect. We take this approach as a gold standard for full-dose CT images,
however, in Sect. 4 we show that it yields poor quality in low-dose CT images.
Therefore, we need to adjust the postprocessing step for LDCT. In addition to
Näıve-Thresholding (l, u) and Median-Thresholding (l, u) we also validate the

A
ut

ho
r 

Pr
oo

f



6 M. Goncharov et al.

Gaussian-Thresholding (l, u, σ), which is applying the gaussian filtering with
scale σ to the CT image, followed by thresholding voxels inside pericardium to
[l, u] range. The simple way to adjust all three aforementioned approaches is to
calibrate the parameters (l, u).

To compare different approaches for postprocessing in LDCT, we use the
Unlabeled-Paired dataset. We predict the PIR masks in both full-dose and low-
dose image for each patient using the network described in Sect. 3.1. Then
we apply Median-Thresholding (−190,−30) to the PIR predictions in full-
dose CT images and take the resulting volumes as a ground truth for each
patient. After that, we apply Näıve-Thresholding (l, u), Median-Thresholding
(l, u), and Gaussian-Thresholding (l, u, σ) for σ ∈ {1, 3} mm, for (l, u) ∈
{−300,−290, . . . ,−110,−100} × {−70,−65, . . . ,−15,−10}HU to the PIR pre-
dictions in LDCT images. For each postprocessing setup we calculate the mean
absolute errors between the resulting volumes and the ground truth volumes.
Thus, we choose the best setup for postprocessing in LDCT images to fit the
ground truth volumes predicted in the corresponding CT images. The results of
this calibration are described in Sect. 4.

3.3 EAT Quantification in LDCT

The proposed method for EAT volume estimation in LDCT images consists of
PIR segmentation using the network described in Sect. 3.1 and the calibrated
postprocessing described in Sect. 3.2.

To finally assess the quality of this method we use the Labeled-Paired dataset.
For each patient we predict the EAT volume in LDCT image and calculate
the ground truth EAT folume in full-dose CT image using the ground truth
pericardium annotation and Median-Thresholding (−190,−30), following [2,3].
In Sect. 4 we report the mean absolute error and Pearson’s correlation between
the predicted and ground truth volumes. Also, we report the inter-rater mean
absolute errors for the ground truth volumes, as a strong baseline for the quality
of EAT volume estimation in the Labeled-Paired dataset.

4 Results

4.1 Pericardium Interior Region Segmentation

In Table 1, we report the quality metrics for PIR segmentation in low-dose and
full-dose CT images via the network described in Sect. 3.1. As seen, the quality
in low-dose CT is as good as quality in full-dose CT. Also we show that the
network’s error achieves the inter-rater variability.

Also, in the first row of Table 2, we report the quality metrics for the EAT
volume estimation in full-dose CT images via the network followed by Median-
Thresholding (−190,−30). Despite that volume prediction error substantially
exceeds the inter-rater volume estimation, we obtained the same mean Pearson’s
R of 0.97 as authors of [3], and conclude that estimation of EAT volume in full-
dose CT images is reliable.
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Quantification of Epicardial Adipose Tissue in Low-Dose CT 7

Table 1. Pericardium interior region segmentation Dice scores. We used 5-fold cross-
validation for the proposed approach; the numbers are presented as mean (std). Inter-
rater variability estimation is based on multiple annotations per image.

Dataset Proposed Inter-rater

Labeled-ULDCT 0.95(0.00) 0.95

Labeled-CT 0.95(0.00) 0.96

4.2 Postprocessing Calibration for LDCT

The mean absolute errors between predicted EAT volumes in low-dose and full-
dose CT images for the same patients from Unlabeled-Paired dataset, for different
LDCT-postprocessing setups, are shown in Fig. 2.

Fig. 2. The mean absolute errors maps on the grid of (l, v) values for the different
postprocessing setups. Mean absolute errors are shown by color; colorbar values are
given in milliliters.

Gaussian-Thresholding (l, u, σ = 1 mm) allows to achieve an optimal mean
absolute error of 14.54 ml, when setting (l, u) = (−170,−29), while setting the
standard fat attenuation range (l, u) = (−190,−30) yields mean absolute error
of 14.58 ml. Median-Thresholding (l, u) yields the optimal mean absolute error
of 15.54 ml, when setting (l, u) = (−160,−39), which significantly differs from
the standard range.

Both these optimums are comparable with the error between the unknown
true and the predicted, taken as ground truth, EAT volumes in the CT image.
Therefore, we cannot conclude that gaussian filtering allows to estimate the
EAT volume in LDCT more accurately then median filtering. However, we give
preference to the Gaussian-Thresholding (−190,−30, σ = 1 mm) postprocessing,
because it achieves the optimal error, while keeping the standard thresholds for
the fat voxels.

4.3 EAT Quantification in LDCT

In the second row of the Table 2 we report the quality metrics for the EAT
volume estimation via the network, described in Sect. 3.1, followed by Gaussian-
Thresholding (−190,−30, σ = 1 mm) postprocessing, chosen as a result of the
calibration, described in Sect. 3.2 and Sect. 4.2. As seen, the proposed method
achieves the same quality in low-dose CT and full-dose CT images.
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8 M. Goncharov et al.

Table 2. Epicardial Adipose Tissue quantification metrics. We report Mean Absolute
Error (MAE) in milliliters, Pearson’s R, and mean Bias between the predicted and
the average manually estimated EAT volumes, as well as mean absolute error between
multiple manually estimated volumes. The numbers are presented as mean (std). The
first row contains the metrics calculated using the 5-fold cross-validation on Labeled-
CT dataset. The second row compares the network followed by Gaussian-Thresholding
(−190, −30, σ =1 mm) as a model for EAT quantification in LDCTs versus manual
estimations in corresponding CTs from the Labeled-Paired dataset.

Dataset EAT volume MAE, ml Pearson’s R Bias, ml

Proposed Inter-rater

Labeled-CT 14.45(3.14) 9.84 0.97(0.02) −0.12(6.0)

Labeled-Paired 13.73(0.96) 7.6 0.96(0.01) 2.26(2.46)

5 Discussion

We studied automatic EAT quantification on LDCT images using a large
database with more than 500 subjects. Despite poor image quality due to ultra-
low dose (less than 1 ms), the proposed combination of classical 3D U-net and
postprocessing achieves excellent results. The quality of automatic EAT quan-
tification is almost equal to that for CTs images (Pearson’s R 0.96 ± 0.01 and
0.97 ± 0.02 correspondingly). A slightly higher std for CTs can be explained
by a much smaller number of full dose studies in the training set (415 vs 76).
The obtained scores are aligned with findings in other studeis, e.g. see a large
multicenter study [3] where Pearson’s R 0.974 was reported.

Another interesting finding shows that a popular postprocessing approach
based on the median filter may lead to a systematic shift in HU range of EAT
voxels, whereas a Gaussian filter yields better results even within the standard
[−190,−30] range. It is important to note that this outcome depends on a partic-
ular LDCT protocol and may not be generalized to other protocols (for example,
with voltage reduced to 100 kV).

Despite the high quality of the solution, the mean absolute error of our
LDCT-based estimation is higher than inter-rater variability on CTs collected
from the same subjects (14.45 ± 3.14 and 7.6, correspondingly). Due to several
limitations of our study, we can not identify the key contributing factors. Among
these limitations, we highlight the interval up to 60 days between the collection
of CT and LDCT images for subjects from Labeled Paired which could result in
systematic differences not related to change in CT dose.

Acknowledgments. This research was supported by the Russian Science Founda-
tion grant 20-71-10134. Computational experiments were powered by Zhores, a super
computer at Skolkovo Institute of Science and Technology [20].
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Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly


