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a b s t r a c t 

Background and objective: Lung cancer is the most common type of cancer with a high mortality rate. 

Early detection using medical imaging is critically important for the long-term survival of the patients. 

Computer-aided diagnosis (CAD) tools can potentially reduce the number of incorrect interpretations of 

medical image data by radiologists. Datasets with adequate sample size, annotation, and truth are the 

dominant factors in developing and training effective CAD algorithms. The objective of this study was to 

produce a practical approach and a tool for the creation of medical image datasets. 

Methods: The proposed model uses the modified maximum transverse diameter approach to mark a puta- 

tive lung nodule. The modification involves the possibility to use a set of overlapping spheres of appropri- 

ate size to approximate the shape of the nodule. The algorithm embedded in the model also groups the 

marks made by different readers for the same lesion. We used the data of 536 randomly selected patients 

of Moscow outpatient clinics to create a dataset of standard-dose chest computed tomography (CT) scans 

utilizing the double-reading approach with arbitration. Six volunteer radiologists independently produced 

a report for each scan using the proposed model with the main focus on the detection of lesions with 

sizes ranging from 3 to 30 mm. After this, an arbitrator reviewed their marks and annotations. 

Results: The maximum transverse diameter approach outperformed the alternative methods (3D box, el- 

lipsoid, and complete outline construction) in a study of 10,0 0 0 computer-generated tumor models of 

different shapes in terms of accuracy and speed of nodule shape approximation. The markup and anno- 

tation of the CTLungCa-500 dataset revealed 72 studies containing no lung nodules. The remaining 464 

CT scans contained 3151 lesions marked by at least one radiologist: 56%, 14%, and 29% of the lesions 

were malignant, benign, and non-nodular, respectively. 2887 lesions have the target size of 3–30 mm. 

Only 70 nodules were uniformly identified by all the six readers. An increase in the number of indepen- 

dent readers providing CT scans interpretations led to an accuracy increase associated with a decrease in 

agreement. The dataset markup process took three working weeks. 

Conclusions: The developed cluster model simplifies the collaborative and crowdsourced creation of image 

repositories and makes it time-efficient. Our proof-of-concept dataset provides a valuable source of an- 

notated medical imaging data for training CAD algorithms aimed at early detection of lung nodules. The 

tool and the dataset are publicly available at https://github.com/Center- of- Diagnostics- and- Telemedicine/ 

FAnTom.git and https://mosmed.ai/en/datasets/ct _ lungcancer _ 500/ , respectively. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Lung cancer, a highly invasive and rapidly metastasizing disease, 

s the most common type of cancer associated with a poor progno- 
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is [1] . According to Bray et al., in 2018 [2] , it was the leading cause

f cancer deaths worldwide (18.4%), followed by stomach (8.2%), 

iver (8.2%), and breast (6.6%) cancer . Although a number of new 

argeted agents and immunotherapies are being developed, early 

etection and treatment are still the best options for the long- 

erm survival of lung cancer patients [3,4] . This requires routine 

onitoring of high-risk subjects using computed tomography (CT) 

nd involves examination of a huge number of CT scans by radi- 

logists [5] . Computer-aided diagnosis (CAD) tools based on ma- 

hine learning (ML) models are intended to assist the radiologists 

y marking suspicious features on chest images aiding the human 

nspection. 

The cornerstone of developing and improving accurate and 

omputationally efficient ML models is the availability of high- 

uality training and testing datasets. The main datasets used in 

ung cancer research are the combined database of the Lung Im- 

ge Database Consortium and the Image Database Resource Initia- 

ive (LIDC/IRDI) [6] , the LUNA16 subset of LIDC/IDRI database [7] , 

he dataset provided by the LUNGx challenge organized by SPIE, 

he American Association of Physicists in Medicine (AAPM), and 

he National Cancer Institute (NCI) [8] , the Lung Test Images from 

otol Environment (Lung TIME) database [9] , ANODE09 database 

10] , the database of Lung CT Imaging Signs (LISS) [11] , and the

ata from National Lung Screening Trial (NLST) of NCI [12] . 

Currently, most large datasets for lung cancer research are cre- 

ted from images acquired in screening trials and therefore con- 

ist of low-dose CT (LDCT) scans. Unsurprisingly, the most notable 

chievements in performance of ML models are made in this area 

13,14] . However, LDCT has its limitations [15] , and for some sce- 

arios, the use of standard-dose CT is preferable. Several studies 

eport that standard-dose CT images provide data for radiomics 

nalysis that can be used for early detection of metastases [16–18] . 

nfortunately, these studies rely on non-public datasets of limited 

ize, which does not allow the fine-tuning of the proposed meth- 

ds. The insufficient availability of large amounts of accurately an- 

otated training data currently is a bottleneck of this line of re- 

earch. 

There is a variety of software tools developed for medical image 

nnotation [19–23] . They enable partial or full automation of the 

abeling process, but the interpretation of radiological data still de- 

ends on human intelligence. Crowdsourcing platforms have per- 

ormed well in cost-effective large-scale image annotation [24] ; 

owever, they have limitations as the correct reading of CT scans 

equires special training and experience [25] . Weak labeling ap- 

roaches (for example, free-text radiology reports [26] , bounding 

oxes, or outlier correction with the use of a weakly labeled atlas 

27] ) are proposed to reduce the workload of medical experts. 

We propose an open-source tool adapted for collaborative mul- 

itenant annotation of CT scan datasets, available at https://github. 

om/Center- of- Diagnostics- and- Telemedicine/FAnTom.git . The tool 

s based on a cluster model for nodule localization. The model’s 

ain features are the tolerance to slight differences in interpre- 

ations of individual readers and the ability to describe complex- 

haped lesions with low effort. Using the double-reading approach 

ith arbitration for ground truth annotation, we have created 

TLungCa-500, a publicly available “proof-of-concept” dataset of 

horacic standard-dose CT scans, consisting of 536 cases of patients 

ith a high risk of lung cancer. 

. Materials and methods 

.1. Patient data 

The Mandatory Health Insurance System of the Russian Federa- 

ion provides free health services for everyone who resides perma- 
2 
ently or temporarily in Russia. Federal Law No. 326-FZ regulates 

he collection of personal data relating to all diagnoses, outcomes, 

orms, duration, and scope of medical care. Clinical data are stored 

n the Unified Medical Information Analysis System (UMIAS), and 

he corresponding medical images are stored in the Unified Radi- 

logy Information System (URIS). For some procedures, including 

T, patients sign informed consent to use their anonymized data 

or scientific purposes. For this multi-center study, we retrospec- 

ively collected the URIS/UMIAS data of patients of Moscow (Rus- 

ia) outpatient clinics, aged 50 to 75 years, who underwent diag- 

ostic standard-dose chest CT imaging between January 2015 and 

ecember 2017, according to an attending physician’s referral due 

o suspected lung cancer. The initial dataset contained 3897 tho- 

acic CT scans. Of these, we randomly selected a subset of 550 

cans from different patients for mock-up annotation and markup 

sing the random module of Python 3.8.2 [28] . Our goal was to 

reate a dataset of minimally sufficient size for the training of a 

lassifier ML model. The size of the dataset was based on the re- 

ults of Figueroa et al., according to which it takes between 80 

o 560 annotated samples to achieve the desired performance of 

 classifier algorithm [29] . Fourteen CT scans were excluded due to 

on-compliance with the patient age criteria or imaging protocol 

equirements as some studies were performed using a low-dose 

r pediatric CT protocol. While creating the database, all protected 

ealth information of the patients was removed from the DICOM 

eaders using in-house medical research anonymization software. 

CT scans were acquired according to CT scanners manu- 

acturers’ protocols. The recommended scanning parameters for 

tandard-size patients (height, 170 cm; weight, 70 kg) were as fol- 

ows: automatic tube current modulation at the mean potential 

f 120 kV, 350-mm field of view, slice thickness ≤ 1 . 5 mm [30] ,

pacing between adjacent slices ≤ slice thickness. Scans were ac- 

uired with subjects in the supine position, from the diaphragm 

o the apex of the lung within a single breath-hold. Reconstruc- 

ion kernels were manufacturer-specific. Toshiba scanners: FC50, 

C51, FC52, FC53, FC07 for lung tissue, and FC07, FC08, FC09, FC17, 

C18 for soft tissue. Siemens: B70, B75, and B80. Philips: “Y-Sharp”

nd “LUNG” for lung tissue, “SOFT” for soft tissue. General Electrics 

canner models: “LUNG” for lung tissue, “SOFT” for soft tissue. 

.2. Annotation and markup 

Interpretation of CT scans by radiologists is subjective and 

rror-prone [31,32] , which can be compensated by the double- 

eading approach [33] . When the costs of false-positive and false- 

egative errors are equally high, an arbitration of initial readings 

roved to provide the optimal accuracy [34] . Note that arbitration 

s effective only if the initial readers make different mistakes [34] . 

herefore, the number of readers can directly affect the accuracy of 

arkup and annotation. According to Herman and Hessel, a given 

alse-positive finding is unlikely to be discovered by more than 

ne radiologist. However, a large proportion of false-negative er- 

ors are made by two and more readers [35] . Our study involved 

wo groups of radiologists. The first group, consisting of 15 volun- 

eer specialists with an experience of 2 to 10+ years, performed 

he initial reading. To reduce the probability of omissions on CT 

cans, six randomly chosen radiologists from this group indepen- 

ently read every included case. They were instructed to limit the 

arkup to five lesions with sizes ranging from 3 to 30 mm per CT 

can and ignore calcified and perifissural lung nodules. This cutoff

as based on the results of the NELSON trial, which showed that 

he risk of primary cancer increases with the count of nodules ≤ 4 , 

ut decreases for patients with five or more nodules [36] . A single 

epresentative of the second group, which included three radiolo- 

ists with an experience of 10+ years, provided the arbitration of 

he six reader reports. 

https://github.com/Center-of-Diagnostics-and-Telemedicine/FAnTom.git
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Fig. 1. Examples of tumor models. A-D : cross-sections of tumors with 20, 80, 1960 and 7850 growth lines, respectively. 
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.2.1. Evaluation of accuracy and efficiency of different markup 

trategies 

Several strategies exist to mark lung nodules. All of them re- 

uire indication of the center-of-mass location for an abnormality 

ut differ in the approach to describe its shape and size. The nod- 

le geometry can be approximated by a 3D box, sphere, ellipsoid, 

r a complete outline. We compared the accuracy and efficiency of 

he approaches in mock-up measurements of computer-generated 

D lung nodule models to choose the optimal markup strategy. The 

odels were built on the assumption that tumors evolve from a 

ingle initial cell [37] , and the growth rate in different directions 

s heterogeneous, resulting in a spiculated appearance. For each 

umor model, the number of independent growth lines was ran- 

omly assigned from 1 (spherical mass) to 7850 (highly spiculated 

ass). Each line had its own growth rate ranging from 0.1 to 1.0 

 Fig. 1 ). 

The quality of tumor shape approximation using different ap- 

roaches was evaluated for 10,0 0 0 models of varying complexity. 

or this, we fit the models into 3D boxes, spheres, or ellipsoids of 

he minimum size, which allowed to include all points of the ob- 

ect using in-house FAnTom ( F ind An omalies in Tom ography) soft- 

are described in Kulberg et al. [38] . The approximation quality 

as evaluated with the Sørensen–Dice coefficient: 

 = 2 ∗ | X ∩ Y | 
| X | + | Y | , (1) 

here X and Y are two sets, | X | is the number of elements in the 

et X, | X ∩ Y | is the number of elements that are common to both 

ets. 

Ten tumor models were used for a comparative efficiency study 

f different markup strategies. Each model was approximated with 

 3D box, sphere, ellipsoid, or an outline was constructed around 

he tumor using either ITK-Snap [20] , 3D Slicer [21] , or the FAn-

om software. The time spent on each shape approximation was 

ecorded and used to calculate the mean value for each measure- 

ent strategy. 

.2.2. Architecture of the FAnTom software 

The FAnTom software consists of three modules: web server, 

eb service, and client application. The web service controls the 

arkup process workflow. Web service instances are Linux appli- 

ations that run in Docker containers managed by the web server. 

he web server is responsible for interactions with the client ap- 

lication, user authentification, and managing database and PACS 

onnections. The web server runs in the JVM (Java Virtual Ma- 

hine) environment. The front-end module has a graphical inter- 

ace that assists the user in CT scan interpretation. The client ap- 

lication runs in any browser that supports JavaScript. The source 

ode of the FAnTom software is available at https://github.com/ 

enter- of- Diagnostics- and- Telemedicine/FAnTom.git . 
3 
.2.3. Clustering model 

In our approach, a putative lung nodule is marked with a 

phere the center and diameter of which correspond to the center- 

f-mass and the size of the lesion, respectively. There are two pos- 

ible scenarios when this strategy can lead to sub-optimal results. 

First, the lung nodule usually has a spherical shape ( Fig. 2 A), 

ut it can be more complex: elongated or consisting of several 

pherical abnormalities, being distorted by the surrounding tissue 

 Fig. 2 B and C). Description of such lesions with a single sphere 

ould include a large volume that is not part of the nodule. Our 

pproach allows marking a complex-shaped abnormality with a set 

f overlapping spheres, more accurately approximating its geome- 

ry. Whether the spheres correspond to the same nodule is decided 

n the condition that the distance between two individual sphere 

enters should be less than the sum of the spheres’ radii. 

Second, in the double-reading approach, the marks made for 

he same lesion by different radiologists may not match exactly. 

ccording to Revel et al., the inter-reader variability in diameter 

easurements can reach 20% of the average nodule diameter [39] . 

nother source of variability is the location of the center-of-mass 

f the lesion. Finally, the readers may have different interpretations 

f complex-shaped nodules. Some readers may approximate them 

ith a set of spheres, while others use a single sphere of larger 

iameter ( Fig. 2 B). If one reader’s sphere contains the center of the 

ther reader’s sphere, we refer these marks to the same nodule 

 Fig. 2 A). If two or more neighboring spheres made by one or dif-

erent readers just overlap, they are combined into a cluster that 

escribes a complex-shaped lesion ( Fig. 2 Band C). 

.2.4. Image annotation 

The readers performed blinded annotation and markup of CT 

cans using dedicated in-house FAnTom software to indicate the 

iameter of abnormality and coordinates of the center-of-mass. 

he FAnTom interface displays the marks made by the radiologist 

n all the three sections of the DICOM image (transverse, coronal, 

nd sagittal), allowing to adjust the marks on any of them. The 

nterface also contains two fields for specifying the nodule type 

solid, part-solid, or ground-glass) and its malignancy. The result- 

ng report was written to a separate JSON file, individual for each 

eader and each CT scan. 

Next, the six reports for a scan were processed to cluster the 

arks following the above conditions. The clustering results were 

ritten to a new JSON file. The combined report for each study 

ontains separate records for all identified clusters. Each cluster 

onsolidates all marks made by the readers, including empty marks 

or those who did not mention the object. Due to possible dis- 

greements between the readers on whether a particular entity is 

 lung nodule, up to five records in a cluster can be empty. 

Finally, the clustering results were reviewed by the arbitrators. 

he arbitrators were not able to add new lesions to the JSON file. 

https://github.com/Center-of-Diagnostics-and-Telemedicine/FAnTom.git
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Fig. 2. Diversity of lung nodules’ shapes and their markup. Colors of the spheres correspond to the marks made by different radiologists. A : markup of a basic nodule; B, C : 

variants of the markup of a nodule with a complex shape. 
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heir task was to inspect each mark and verify it according to the 

ollowing criteria: 

1. The arbitrator’s agreement with the presence of a nodule at the 

site. If the answer was negative, the “rejected” value was as- 

signed to the decision key, and no further review was needed. 

If the arbitrator approved the mark, the nodule type and size 

adjustment had to be made. If there was a complete agree- 

ment, the arbitrator assigned the “confirmed” value to the deci- 

sion key. 

2. The arbitrator could disagree with the initial assessment of the 

lesion type or size. In this case, the decision key got the “con- 

firmed partially” value and the explanatory statement in Rus- 

sian was assigned to the comment key (for example, “type mis- 

match”, “incorrect size”). Besides that, in case of uncertainty the 

arbitrator had the option to use the “doubt” value for the field. 

The type key was intended for the arbitrator’s opinion on the 

lesion type. In addition to the three above-mentioned nodule 

types, the arbitrators were able to use the “other” type to mark 

dubious entities. The proper size key contained the arbitrator’s 

opinion on the initial size estimate, taking one of two values: 

“true” or “false”. 

3. The arbitrator’s estimate of nodule malignancy, with two possi- 

ble values for the malignancy key: “true” and “false”. The “false”

value was assigned to abnormalities containing fat, fibrous tis- 

sue, fluid, and other benign and non-nodular lesions. 

.2.5. JSON file structure 

Annotation data in the JSON file consisted of three sections: 

1. The doctors section containing the information about the 

reader’s numeric ID and the comment made by the radiolo- 

gist during the initial annotation stage. The content of com- 

ments was not formalized; they could relate to such issues as 

the presence and type of abnormalities or the initial diagnosis. 

Therefore, the comments were not translated into English and 

are given only in Russian. Every reader had a three-digit per- 

sonal ID; if a radiologist was replaced during the image annota- 

tion process, the new reader inherited the ID of the predecessor 

with an additional “+” symbol. 

2. The ids section containing the list of study identifiers obtained 

from the DICOM headers: study ID, accession number , and study 

instance UID . The section also included information on the pa- 

tient’s age and sex ( age and gender keys). The value for the age 

key had a four-character format with the first three positions 

describing the numerical value, and the last position specifying 

the unit type for the age (Y, for years; M, for months; D, for 

days). The value for the gender key was either “F” (female) or 

“M” (male). 

3. The nodules section with the data on lesions identified by the 

radiologists. Here resides an array of cluster records, each con- 

taining six reader records for a putative nodule. Up to five ob- 

jects can be empty if the reader did not identify the nodule. 

Each non-empty object contained the following keys: 
4 
(a) parameters of the sphere encircling the abnormality: diame- 

ter (mm) and coordinates of the center ( x - and y -coordinates 

are always in pixels, z -coordinate is in mm). We observed a 

few cases of skipping slices in CT scans due to PACS down- 

loading peculiarities. To avoid the z scale shift, rather than 

the slice number, we used its absolute coordinate in mm 

recorded in the DICOM attribute Image position (patient), 

tag # (0 020,0 032); 

(b) the type of the nodule, with one of three values: “#0S”

(solid), “#1PS” (part-solid), and “#2GG” (ground-glass); 

(c) the expert decision key containing the results of arbitration. 

.2.6. Reader accuracy and inter-observer agreement 

For the accuracy (Acc) calculations, cases when, in the arbitra- 

or’s opinion, at least one reader correctly identified a lung nodule 

t the specific site of a CT scan were recognized as true positives 

TP). True-negative (TN) results included cases when, in the arbi- 

rator’s opinion, at least one reader did not mark an entity that 

as incorrectly marked by any other reader. For the data analysis, 

e assumed that the arbitrator’s judgment was always correct. The 

ccuracy was calculated as: 

cc = 

T P + T N 

P + N 

, (2) 

here P is the number of correct findings, and N is the number of 

ncorrect findings. 

The inter-observer variability was analyzed using the percent- 

ge agreement metric. The statistical analysis was performed with 

 3.6.3 [40] using dplyr [41] and irr [42] packages. 

.2.7. Database access 

The DICOM images and associated JSON files for all 536 cases 

re available at https://mosmed.ai/en/datasets/ct _ lungcancer _ 500/ . 

. Results 

The participants providing their data for the dataset were 60% 

emales and 40% males aged 50 to 75 years ( 62 . 3 ± 6 . 2 and 62 . 4 ±
 . 7 for females and males, respectively). For 72 subjects, radiolo- 

ists did not find any lung abnormalities. The remaining 464 CT 

cans contained 3151 nodules marked by the readers. 

Of these, 1761 (55.8%) nodules were recognized as malignant, 

nd 445 (14.1%) nodules were assigned to the category of benign 

esions. There were also 926 (29.4%) abnormalities of non-nodular 

ype. In the remaining 19 cases, the radiologists did not agree on 

he nodule’s malignancy (Supplementary Table S2). 

Thirty-one radiologists performed the initial reading. Each of 

he 15 radiologists from the initial pool was replaced at some point 

f the study due to refusal or inability to further participate in the 

roject; in one case, the replacement reader was also replaced. 

https://mosmed.ai/en/datasets/ct_lungcancer_500/
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.1. Accuracy and efficiency of different markup strategies 

The nodule size is one of the most important parameters for di- 

gnostic accuracy [43] . According to the Fleischner Society guide- 

ines, the nodule size measurements should be performed in two 

imensions, along the short and long axes of the lesion [30] . There- 

ore, for every marked nodule, reader should specify six param- 

ters: coordinates of the center-of-mass, the two size measure- 

ents, and slope angle for one of the axes. There are alternative 

pproaches describing the lung nodule shape and size: using a 3D 

ox, a sphere, or constructing a complete outline of lesion. Each 

f them requires the reader to define a specific set of parameters 

 Table 1 ). We compared the accuracy and labor intensity of these 

pproaches in a study of 10,0 0 0 computer-generated 3D lung nod- 

le models of different shapes and sizes. Every model was approx- 

mated by a single shape in case of the 3D box, sphere, or ellipsoid

pproaches. 

Nodule markup performed by the maximum transverse diame- 

er (“Sphere” method in Table 1 ) allowed us to achieve the opti- 

al balance between the accuracy and operational time. In terms 

f the nodule shape approximation, the approach was slightly in- 

erior to the method of nodule description with an ellipsoid model 

 d 0 . 5 ± 0 . 3 versus 0 . 6 ± 0 . 3 , respectively), but significantly better

han the 3D box approach ( d 0 . 3 ± 0 . 2 ). The maximum diameter

pproach was the fastest of all three of them ( Table 1 ). The out-

ine construction method was characterized by the highest accu- 

acy achieved at the expense of the markup time ( Table 1 ). 

According to the results of this experiment, the sphere ap- 

roach to the markup of DICOM images became the basis of our 

luster model for nodule localization. The use of additional spheres 

or a better approximation of the nodule shape can increase the 

ccuracy of the method while maintaining its efficiency. 

On average, each of the 15 radiologists from the initial pool 

arked and annotated 1 , 050 ± 140 abnormalities during the 

atabase creation using our method, spending about 12 min per 

T scan. Their replacements had a much lower workload, with 

10 ± 42 marked lesions per reader. A total of three working weeks 

ere spent on the markup and annotation of CT scans. 

.2. Number of readers and accuracy of interpretations 

Our dataset contained 2003 (63.6%) lesions identified by only 

ne out of six radiologists, of which 896 were marked as malig- 

ant, 324 as benign, and 783 as non-nodular (Supplementary Ta- 

le S1). Besides that, there were 41 putatively malignant nodules 

ith no type assigned. The number of abnormalities considered as 

odules by more than one radiologist decreased gradually with an 

ncrease in the number of experts that marked the lesion ( Fig. 3 ). 

In total, there were 242 (7.7%) lesions marked by three readers, 

18 (3.7%) lesions identified by four readers, and only for 70 (2.2%) 

bnormalities all the six readers were unanimous ( Fig. 3 , Supple- 

entary Table S1). The average agreement for pairs of readers was 

0 . 5 ± 5 . 3% , ranging from 40.2 to 73.0%. The majority of disagree-

ents ( 93 . 0 ± 4 . 1% ) were in regard to the presence of a nodule at

he specific site on a CT scan. 

There was a significant negative correlation between the accu- 

acy of reader interpretations and the inter-observer agreement, 

s the number of readers increased from two to six, r = −. 78 , p <

 . 05 ( Table 2 ). In agreement with Herman and Hessel [35] , 85.7%,

1.4%, and 2.9% of false positives were made by one, two, and three 

ut of six readers, respectively. For the false-negatives, the distri- 

ution was more even, as 25.8%, 8.1%, 8.1%, 19.3%, and 30.6% of 

hem were made by only one, two, three, four, and five out of six 

eaders, respectively. 
5 
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Fig. 3. The number of abnormalities marked by a corresponding number of radi- 

ologists. Black: malignant nodules; gray: benign nodules; light-gray: non-nodular 

lesions. 

Table 2 

Inter-reader agreement and accuracy. 

Number of readers Agreement, % Accuracy, % 

2 57 . 0 ± 15 . 6 79 . 7 ± 4 . 9 

3 37 . 1 ± 7 . 3 89 . 2 ± 5 . 1 

4 16 . 5 ± 5 . 7 93 . 8 ± 3 . 6 

5 9 . 8 ± 8 . 1 97 . 9 ± 0 . 1 

6 2.2 100.0 

3

a

r

4

a

s

g

“

a

w

1

b

i

b

d

4

f

i

g

m

i

t

t

t

i

o

d

W

p

W

c

b

s

m

p

w

s

a

c

t

a

T

p

e

o

A

f

v

i

m

m

o

l

i

t

t

e

t

u

v

o

e

f

t

d

d

n

m

c

r

f

p

i

n

t

a

s

d

t

d

n

t

a

M

s

.3. Nodule content in the dataset 

For nodule identification, the radiologists were instructed to pay 

ttention to the lesions with sizes ranging from 3 to 30 mm. As a 

esult, the dataset contained only 11 nodules < 3 mm (0.3%) and 

2 nodules > 30 mm (1.3%) marked by the readers. For further 

nalysis, we divided our dataset into three subcategories by nodule 

ize according to the recommendations of the Fleischner Society 

uidelines [30] ( Table 3 ). 

There were 72 benign nodules assigned by the experts to the 

other” type, and 811 non-malignant abnormalities with no type 

ssigned. Fifteen lesions classified by the radiologists as malignant 

ere also annotated as belonging to the “other” type. All of the 

5 nodules were initially recognized as solid or part-solid lesions, 

ut the assessment was not confirmed by an arbitrator. The same 

s true for the 34 malignant nodules with no type assigned. We 

elieve that these cases require further inspection and plan to ad- 

ress them in the future updates of the dataset. 

. Discussion 

The size and quality of a training dataset are the key factors 

or ML model performance in any application, including medical 

maging [44] . Unfortunately, there are no standardized rules and 

uidelines on how to annotate medical image data properly. Al- 

ost every available collection of clinical CT scans has its own 

nformation organization design, with its advantages and limita- 

ions. Creating new datasets is a time-consuming and challenging 

ask that requires human experts to provide a ground truth anno- 
6 
ation. Crowdsourcing performed by unskilled individuals proved 

tself as a valuable tool for time-efficient large-scale annotations 

f image databases [24,45] , but the accurate interpretation of ra- 

iological images requires specialized training and experience [25] . 

eak forms of annotations are a compromise between the two ap- 

roaches aimed at reducing the required annotation efforts [26,27] . 

e present a cluster model for nodule localization adapted for 

ollaborative and crowdsourced annotation that simplifies the la- 

eling of DICOM images. Using the in-house FAnTom multitenant 

oftware based on this model, we have created CTLungCa-500, a 

ock-up dataset, containing 536 standard-dose chest CT scans of 

atients with a high risk of lung cancer. 

To choose the optimal primary markup method for our model, 

e conducted a comparative study of the main approaches for de- 

cribing the geometry of a lung nodule: using a 3D box, a sphere, 

n ellipsoid, or manually constructing an outline of the lesion. Ac- 

ording to the measurements of efficiency and shape approxima- 

ion accuracy of 10,0 0 0 computer-generated models, the sphere 

pproach showed the best balance between these metrics (see 

able 1 ). 

Our cluster model is well-suited for the double-reading ap- 

roach as it can automatically group the marks made by the read- 

rs for the same lesion, even if their interpretations differ in terms 

f shape, size, and location of center-of-mass of an abnormality. 

nother advantage of clustering is the ability of our model to ef- 

ectively describe complex-shaped lesions. Tumors, especially ad- 

anced ones, are not always spherical; instead, they can have an 

rregular and heterogeneous shape. Therefore, the classical maxi- 

um transverse diameter approach tends to overestimate both tu- 

or diameter and volume [46] . Our model enables the description 

f a heterogeneous, non-spherical nodule as a collection of over- 

apping spheres, which minimizes the inaccuracy of shape approx- 

mation. 

Currently, radiology reports are a prevalent ground truth anno- 

ation method [6,8,47] , but it is associated with errors in the detec- 

ion of lung nodules [31,32] . A common practice to minimize the 

rror is to use the double-reading approach with arbitration of ini- 

ial readings. For example, the creators of the LIDC/IDRI database 

sed subjective assessments of four experienced radiologists re- 

ised at the second read phase considering the interpretations of 

ther readers [6] . Each radiologist constructed a full outline of ev- 

ry nodule and provided a detailed description of the lesion. Un- 

ortunately, such a high-quality and high-effort approach is very 

ime-consuming; it took about seven years to create the LIDC/IDRI 

atabase [6] . Despite the fact that the results of other readers were 

isclosed to the radiologists for a final decision, there still was sig- 

ificant variability in identification and classification of lesions. The 

ain focus of the LIDC/IDRI database was on nodules ≥ 3mm; it 

ontains 2,669 lesions of this category identified by at least one 

eader. Of these, only 928 lesions (35%) were marked by all the 

our radiologists. 

In our model, we suggest a similar ground truth annotation ap- 

roach, lowering the annotation quality requirements and increas- 

ng the number of initial readers to reduce the probability of false- 

egative errors. This approach allowed us to get different interpre- 

ations of DICOM images, but with the side effect of serious dis- 

greement between the readers. The inter-observer agreement for 

ix readers was only 2%, which is far below that of the LIDC/IDRI 

atabase. We associate it with the fact that following the instruc- 

ions and limiting their effort s at five entities per CT scan, the ra- 

iologists marked different lesions in cases of multiple pulmonary 

odules. Besides that, the volunteer radiologists performed the in- 

erpretation of CT scans in a non-controlled environment, usu- 

lly at the end of the working day or at night, being exhausted. 

oreover, the readers used their personal computers with user- 

pecific FAnTom parameters for brightness, contrast, and gamma 
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Table 3 

Dataset nodule content by size and type. 

Nodule 

type 

≤ 6 mm 6 mm < nodule size ≤ 8 mm 8 mm < nodule size ≤ 30 mm 

malignant non-malignant malignant non-malignant malignant non-malignant 

count size, mm count size, mm count size, mm count size, mm count size, mm count size, mm 

solid 716 4 . 7 ± 0 . 7 112 4 . 7 ± 0 . 8 209 7 . 1 ± 0 . 6 37 7 . 0 ± 0 . 5 384 13 . 8 ± 5 . 4 35 12 . 3 ± 4 . 5 

part-solid 118 4 . 7 ± 0 . 8 32 4 . 9 ± 0 . 9 35 7 . 0 ± 0 . 5 6 6 . 9 ± 0 . 2 26 12 . 6 ± 4 . 5 12 12 . 2 ± 3 . 1 

ground-glass 56 4 . 7 ± 0 . 7 23 5 . 3 ± 0 . 8 25 7 . 1 ± 0 . 6 10 7 . 2 ± 0 . 6 48 13 . 5 ± 5 . 0 9 10 . 8 ± 1 . 5 

other 7 4 . 3 ± 0 . 4 68 4 . 8 ± 0 . 7 2 7 . 2 ± 0 . 3 19 7 . 1 ± 0 . 5 6 17 . 0 ± 5 . 5 47 14 . 9 ± 5 . 6 

none 20 4 . 4 ± 0 . 7 444 4 . 3 ± 0 . 7 2 7 . 3 ± 0 . 9 144 7 . 3 ± 0 . 5 12 11 . 6 ± 2 . 4 223 12 . 5 ± 4 . 1 
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orrection. All these factors, inevitable for a crowdsourcing model, 

an influence the accuracy of markup and annotation of individ- 

al readers. However, the combined accuracy increased with the 

umber of readers (see Table 2 ). Our results demonstrate that a 

ow-effort annot ation can be effective when done by multiple ex- 

erts and validated by an arbitrator. We plan to address the inter- 

bserver agreement in detail in a separate publication. 

The essential feature of training and testing datasets for ma- 

hine learning is a balance between classes. Cases representing 

on-cancer tissue are just as important for machine learning as 

xamples of specific pathologies. Our dataset contains 926 marked 

on-nodular entities and 72 CT scans from patients without any 

ung abnormalities. Of 2,201 lesions that were annotated as pul- 

onary nodules, 79%, 12%, and 9% of abnormalities belonged to 

he solid, part-solid, and ground-glass type, respectively. It is con- 

istent with the results of Henschke et al., according to which solid 

odules represented 81% of all positive findings on CT scans, and 

he remaining 19% corresponded to part-solid and ground-glass 

odules [48] . 

There are several limitations and known issues of this dataset 

n its current state. First, the sample size (536 CT scans) is not 

arge enough for the training of ML algorithms with a high number 

f parameters that require statistical significance. We plan to add 

he remaining 3347 cases to the dataset in the following releases. 

econd, the metadata contain only radiology reports, with no sup- 

orting biological or genomics data. Third, there are several label 

oise instances: 19 nodules were simultaneously marked as malig- 

ant and benign (Supplementary Table S2), 15 malignant nodules 

ere assigned to the “other” type, and 41 malignant nodules had 

o type assigned; all these cases require additional revision. 

Our cluster method also has limitations. In its current state, it 

oes not allow to specify some characteristics of a nodule such 

s spiculation, subtlety, or internal structure. The method is best 

uited for the double reading approach and might not be optimal 

or other strategies. Moreover, dedicated software is required to 

erform the markup and annotation and display the results. 

Despite the limitations, the proposed method provides an effi- 

ient tool for the collaborative creation of medical image datasets. 

t is tolerant of differences in interpretations of the shape and size 

f a nodule by individual radiologists and allows the reader to 

escribe complex-shaped lesions effectively with low effort. The 

TLungCa-500 dataset of standard-dose CT images created using 

he method represents all categories of lung nodules and healthy 

issue, making it applicable for training of CAD algorithms, espe- 

ially those with relatively few parameters. 

. Conclusion 

We present a new simplified cluster model for nodule local- 

zation, which minimizes the inaccuracy of tumor shape approxi- 

ation while utilizing the efficient maximum transverse diameter 

pproach. The model is best suited for collaborative and crowd- 

ourced projects using the double reading approach for CT scan in- 
7 
erpretations. It automatically groups the marks made by different 

eaders for the same nodule, even if there is some disagreement on 

he shape and size of the lesion and location of its center-of-mass. 

Using the model, we have created the publicly available dataset 

f standard-dose lung CT images. The dataset consists of 536 cases 

ollected from lung cancer high-risk patients. Every case is pro- 

ided with six reports on the location, size, and type of lung nod- 

les verified by the arbitrator. The main purpose of the dataset is 

he training of ML algorithms; therefore, we looked for a balance 

etween cancer and non-cancer tissues. To make the dataset suit- 

ble for training complex CAD algorithms, we plan to expand it to 

883 cases in future releases. 

vailability of data and materials 

The FAnTom software is available at https://github.com/ 

enter- of- Diagnostics- and- Telemedicine/FAnTom.git . The dataset 

upporting the conclusions of this article is available at https: 

/mosmed.ai/en/datasets/ct _ lungcancer _ 500/ . 

eclaration of Competing Interest 

Authors declare that they have no conflict of interest. 

RediT authorship contribution statement 

S.P. Morozov: Project administration. V.A. Gombolevskiy: Con- 

eptualization, Methodology, Methodology, Formal analysis, Writ- 

ng - review & editing. A.B. Elizarov: Software. M.A. Gusev: 

oftware. V.P. Novik: Software. S.B. Prokudaylo: Software. A.S. 

ardin: Data curation. E.V. Popov: Data curation. N.V. Ledikhova: 

onceptualization, Methodology. V.Y. Chernina: Investigation. I.A. 

lokhin: Investigation. A.E. Nikolaev: Investigation. R.V. Reshet- 

ikov: Methodology, Formal analysis, Writing - review & editing. 

.V. Vladzymyrskyy: Project administration. N.S. Kulberg: Soft- 

are, Methodology, Formal analysis, Writing - review & editing. 

cknowledgements 

The authors thank Olga Korchazhkina, Senior Research Fellow 

f Federal Research Center “Computer Science and Control” of 

he Russian Academy of Sciences , for valuable discussions of the 

roject. The authors are also grateful to Ekaterina Korepina and 

ikolay Pavlov for their active and valuable participation in cre- 

ting the web interface. The authors acknowledge Marina Vlasova 

or proof-reading the manuscript. Ethical approval no. 2 (1-II-2020) 

as granted by the regional ethics board, Independent Ethics Com- 

ittee, Moscow Regional Office of the Russian Society of Radiolo- 

ists and Radiographists. All participants completed and signed a 

edicated consent form prior to study participation. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.cmpb.2021.106111 

https://github.com/Center-of-Diagnostics-and-Telemedicine/FAnTom.git
https://mosmed.ai/en/datasets/ct_lungcancer_500/
https://doi.org/10.13039/501100002674
https://doi.org/10.1016/j.cmpb.2021.106111


S.P. Morozov, V.A. Gombolevskiy, A.B. Elizarov et al. Computer Methods and Programs in Biomedicine 206 (2021) 106111 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

[  

[  

[

[

[

[  

[  

[  

[  

[

[  

[  

[

[  

[  

[

[

[  

[  

[  

[  

 

[  
eferences 

[1] C. Fitzmaurice , D. Dicker , A. Pain , et al. , The global burden of cancer 2013,

JAMA Oncol. 1 (2015) 505–527 . 

[2] F. Bray , J. Ferlay , I. Soerjomataram , et al. , Global cancer statistics 2018: GLOBO-
CAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries, CA Cancer J. Clin. 68 (2018) 394–424 . 
[3] R. Sangha , J. Price , C.A. Butts , Adjuvant therapy in non-small cell lung cancer:

current and future directions, Oncologist 15 (2010) 862–872 . 
[4] H. Lemjabbar-Alaoui , O.U. Hassan , Y.W. Yang , P. Buchanan , Lung cancer: biology

and treatment options, Biochim. Biophys. Acta 1856 (2015) 189–210 . 

[5] D. Aberle , A.M. Adams , C.D. Berg , et al. , Reduced lung-cancer mortality
with low-dose computed tomographic screening, N. Engl. J. Med. 365 (2011) 

395–409 . 
[6] S.G. Armato , G. McLennan , L. Bidaut , et al. , The lung image database consor-

tium (LIDC) and image database resource initiative (IDRI): a completed refer- 
ence database of lung nodules on CT scans, Med. Phys. 38 (2011) 915–931 . 

[7] A .A .A . Setio , A . Traverso , T. de Bel , et al. , Validation, comparison, and combina-
tion of algorithms for automatic detection of pulmonary nodules in computed 

tomography images: the LUNA16 challenge, Med. Image Anal. 42 (2017) 1–

13 . 
[8] S.G. Armato , K. Drukker , F. Li , et al. , LUNGx challenge for computerized lung

nodule classification, J. Med. Imaging (Bellingham) 3 (2016) 044506 . 
[9] M. Dolejsi, J. Kybic, M. Polovincak, et al., The lung time: annotated lung 

nodule dataset and nodule detection framework, in: Medical Imaging 2009: 
Computer-Aided Diagnosis, volume 7260, International Society for Optics and 

Photonics, p. 72601U. 

[10] B.V. Ginneken , S.G. Armato III , B. de Hoop , et al. , Comparing and combining
algorithms for computer-aided detection of pulmonary nodules in computed 

tomography scans: the ANODE09 study, Med. Image Anal. 14 (2010) 707–722 . 
[11] G. Han , X. Liu , F. Han , et al. , The LISS a public database of common imaging

signs of lung diseases for computer-aided detection and diagnosis research and 
medical education, IEEE Trans. Biomed. Eng. 62 (2014) 648–656 . 

[12] National Cancer Institute. National Lung Screening Trial, 2018, ( https://www. 

cancer.gov/types/lung/research/nlst ), Accessed: 2020-10-20. 
[13] D. Ardila , A.P. Kiraly , S. Bharadwaj , et al. , End-to-end lung cancer screening

with three-dimensional deep learning on low-dose chest computed tomogra- 
phy, Nat. Med. 25 (2019) 954–961 . 

[14] P. Huang , C.T. Lin , Y. Li , et al. , Prediction of lung cancer risk at follow-up
screening with low-dose CT: a training and validation study of a deep learning 

method, Lancet Digit. Health 1 (2019) e353–e362 . 

[15] J.R. Jett , Limitations of screening for lung cancer with low-dose spiral com- 
puted tomography, Clin. Cancer Res. 11 (2005) 4 988s–4 992s . 

[16] Y. Qi , X. Cui , M. Han , et al. , Radiomics analysis of lung CT image for the early
detection of metastases in patients with breast cancer: preliminary findings 

from a retrospective cohort study, Eur. Radiol. 30 (2020) 4545–4556 . 
[17] T. Sun , R. Zhang , J. Wang , et al. , Computer-aided diagnosis for early-stage lung

cancer based on longitudinal and balanced data, PLoS One 8 (2013) e63559 . 

[18] J.R. Ferreira Junior , M. Koenigkam-Santos , et al. , Radiomics-based features for 
pattern recognition of lung cancer histopathology and metastases, Comput. 

Methods Prog. Biomed. 159 (2018) 23–30 . 
[19] C.T. Rueden , J. Schindelin , M.C. Hiner , et al. , Imagej2: imagej for the next gen-

eration of scientific image data, BMC Bioinform. 18 (2017) 1–26 . 
20] P.A. Yushkevich , J. Piven , H.C. Hazlett , et al. , User-guided 3D active contour seg-

mentation of anatomical structures: significantly improved efficiency and reli- 

ability, Neuroimage 31 (2006) 1116–1128 . 
[21] A. Fedorov , R. Beichel , J. Kalpathy-Cramer , et al. , 3D slicer as an image com-

puting platform for the quantitative imaging network, Magn. Reson. Imaging 
30 (2012) 1323–1341 . 

22] K.A . Philbrick , A .D. Weston , Z. Akkus , et al. , Ril-contour: a medical imaging
dataset annotation tool for and with deep learning, J. Digit. Imaging 32 (2019) 

571–581 . 
23] M. Nolden , S. Zelzer , A. Seitel , et al. , The medical imaging interaction toolkit:

challenges and advances, Int. J. Comput. Assist. Radiol. Surg. 8 (2013) 607–620 . 
8 
24] E. Heim , T. Roß, A. Seitel , et al. , Large-scale medical image annotation with
crowd-powered algorithms, J. Med. Imaging 5 (2018) 034002 . 

25] V. Cheplygina , A. Perez-Rovira , W. Kuo , et al. , Early experiences with crowd-
sourcing airway annotations in chest CT, Deep Learning and Data Labeling for 

Medical Applications, Springer, 2016 . Pp. 209–218 
26] T. Schlegl, S.M. Waldstein, W.D. Vogl, et al., Predicting semantic descriptions 

from medical images with convolutional neural networks, in: International 
Conference on Information Processing in Medical Imaging, Springer, 437–448. 

27] M. Rajchl, L.M. Koch, C. Ledig, et al., Employing weak annotations for medical 

image analysis problems, arXiv preprint arXiv:1708.06297 (2017). 
28] G.V. Rossum , The Python Library Reference, Release 3.8.2, Python Software 

Foundation, 2020 . 
29] R.L. Figueroa , Q. Zeng-Treitler , S. Kandula , L.H. Ngo , Predicting sample size re-

quired for classification performance, BMC Med. Inform. Decis. Mak. 12 (2012) 
1–10 . 

30] H. MacMahon , D.P. Naidich , J.M. Goo , et al. , Guidelines for management of inci-

dental pulmonary nodules detected on CT images: from the fleischner society 
2017, Radiology 284 (2017) 228–243 . 

[31] R. Fitzgerald , Error in radiology, Clin. Radiol. 56 (2001) 938–946 . 
32] A.D. Ciello , P. Franchi , A. Contegiacomo , et al. , Missed lung cancer: when,

where, and why? Diagn. Interv. Radiol. 23 (2017) 118–126 . 
33] H. Geijer , M. Geijer , Added value of double reading in diagnostic radiology, a

systematic review, Insights Imaging 9 (2018) 287–301 . 

34] S.J. Hessel , P.G. Herman , R.G. Swensson , Improving performance by multiple in- 
terpretations of chest radiographs: effectiveness and cost, Radiology 127 (1978) 

589–594 . 
35] P.G. Herman , S.J. Hessel , Accuracy and its relationship to experience in the in-

terpretation of chest radiographs, Investig. Radiol. 10 (1975) 62–67 . 
36] R. Peters , M. Heuvelmans , S. Brinkhof , P.V. Ooijen , M. Oudkerk , P. de Jong ,

R. Vliegenthart , et al. , Prevalence of pulmonary multi-nodularity in CT lung 

cancer screening, European Congress of Radiology, 2015 . 
37] N.E. Navin , The first five years of single-cell cancer genomics and beyond, 

Genome Res. 25 (2015) 1499–1507 . 
38] N.S. Kulberg , M.A. Gusev , R.V. Reshetnikov , et al. , Methodology and tools for

creating training samples for artificial intelligence systems for recognizing lung 
cancer on CT images, Health Care Russ. Fed. 64 (2020) 343–350 . 

39] M.-P. Revel , A. Bissery , M. Bienvenu , et al. , Are two-dimensional CT measure-

ments of small noncalcified pulmonary nodules reliable? Radiology 231 (2004) 
453–458 . 

40] R Core Team , R: A Language and Environment for Statistical Computing, R 
Foundation for Statistical Computing, Vienna, Austria, 2020 . 

[41] H. Wickham, R. François, L. Henry, K. Müller, dplyr: A grammar of data manip- 
ulation. r package version 1.0.4, 2021. 

42] M. Gamer, J. Lemon, I. Fellows, P. Singh, irr: Various coefficients of interrater 

reliability and agreement, 2019. 
43] N. Kothary , L. Lock , D.Y. Sze , L.V. Hofmann , Computed tomography-guided per-

cutaneous needle biopsy of pulmonary nodules: impact of nodule size on di- 
agnostic accuracy, Clin. Lung. Cancer 10 (2009) 360–363 . 

44] M.D. Kohli , R.M. Summers , J.R. Geis , Medical image data and datasets in the
era of machine learning-whitepaper from the 2016 C-MIMI meeting dataset 

session, J. Digit. Imaging 30 (2017) 392–399 . 
45] S. Albarqouni , C. Baur , F. Achilles , et al. , Aggnet: deep learning from crowds for

mitosis detection in breast cancer histology images, IEEE Trans. Med. Imaging 

35 (2016) 1313–1321 . 
46] M. Nishino , D.M. Jackman , P.J. DiPiro , et al. , Revisiting the relationship between

tumour volume and diameter in advanced NSCLC patients: An exercise to max- 
imize the utility of each measure to assess response to therapy, Clin. Radiol. 69 

(2014) 841–848 . 
[47] J. Wallner , I. Mischak , J. Egger , Computed tomography data collection of the

complete human mandible and valid clinical ground truth models, Sci. Data 6 

(2019) 190 0 03 . 
48] C.I. Henschke , D.F. Yankelevitz , R. Mirtcheva , et al. , CT screening for lung can-

cer: frequency and significance of part-solid and nonsolid nodules, AJR Am. J. 
Roentgenol. 178 (2002) 1053–1057 . 

http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0005
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0011
https://www.cancer.gov/types/lung/research/nlst
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0017
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0018
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0025
http://arxiv.org/abs/1708.06297
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0044
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0045
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0045
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0045
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0045
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0045
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0046
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0047
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0047
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0047
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0047
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0048
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0048
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0048
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0048
http://refhub.elsevier.com/S0169-2607(21)00186-3/sbref0048

	A simplified cluster model and a tool adapted for collaborative labeling of lung cancer CT scans
	1 Introduction
	2 Materials and methods
	2.1 Patient data
	2.2 Annotation and markup
	2.2.1 Evaluation of accuracy and efficiency of different markup strategies
	2.2.2 Architecture of the FAnTom software
	2.2.3 Clustering model
	2.2.4 Image annotation
	2.2.5 JSON file structure
	2.2.6 Reader accuracy and inter-observer agreement
	2.2.7 Database access


	3 Results
	3.1 Accuracy and efficiency of different markup strategies
	3.2 Number of readers and accuracy of interpretations
	3.3 Nodule content in the dataset

	4 Discussion
	5 Conclusion
	Availability of data and materials
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Supplementary material
	References


